Citation: | LI Xing-hui, CHEN Min-zhi, ZHOU Xiao-yan. Research progress in encapsulation and application of shape-stabilized composite phase-change materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1422-1432. doi: 10.13374/j.issn2095-9389.2020.03.26.002 |
[1] |
馬麗梅, 史丹, 裴慶冰. 中國能源低碳轉型(2015—2050): 可再生能源發展與可行路徑. 中國人口·資源與環境, 2018, 28(2):8
Ma L M, Shi D, Pei Q B. Low-carbon transformation of China’s energy in 2015—2050: renewable energy development and feasible path. China Popul Resour Environ, 2018, 28(2): 8
|
[2] |
Kasaeian A, Bahrami L, Pourfayaz F, et al. Experimental studies on the applications of PCMs and nano-PCMs in buildings: a critical review. Energy Build, 2017, 154: 96 doi: 10.1016/j.enbuild.2017.08.037
|
[3] |
王鑫, 方建華, 吳江, 等. 相變材料的封裝定型技術研究進展. 化工新型材料, 2019, 47(9):58
Wang X, Fang J H, Wu J, et al. Development of packaging technology for phase change material. New Chem Mater, 2019, 47(9): 58
|
[4] |
Liu H, Wang X D, Wu D Z, et al. Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation. Energy, 2019, 172: 599 doi: 10.1016/j.energy.2019.01.151
|
[5] |
Li C E, Yu H, Song Y, et al. Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings. Energy Convers Manage, 2019, 183: 791 doi: 10.1016/j.enconman.2019.01.036
|
[6] |
張天馳, 俞海云, 冒愛琴, 等. 有機相變儲能材料導熱增強方法研究進展. 過程工程學報, 2017, 17(1):201 doi: 10.12034/j.issn.1009-606X.216225
Zhang T C, Yu H Y, Mao A Q, et al. Research advances in organic phase change materials for technology of thermal enhancement. Chin J Process Eng, 2017, 17(1): 201 doi: 10.12034/j.issn.1009-606X.216225
|
[7] |
魏燕紅. 多功能碳氣凝膠的結構與性能研究[學位論文]. 成都: 四川師范大學, 2018
Wei Y H. Study on the Structure and Properties of Multi-functional Carbon Aerogels[Dissertation]. Chengdu: Sichuan Normal University, 2018
|
[8] |
Yang H Y, Wang Y Z, Yu Q Q, et al. Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage. Appl Energy, 2018, 212: 455 doi: 10.1016/j.apenergy.2017.12.006
|
[9] |
Yang H Y, Chao W X, Di X, et al. Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage. Energy Convers Manage, 2019, 200: 112029 doi: 10.1016/j.enconman.2019.112029
|
[10] |
Yang H Y, Wang S Y, Wang X, et al. Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage. Appl Energy, 2020, 261: 114481 doi: 10.1016/j.apenergy.2019.114481
|
[11] |
Yang H Y, Wang Y Z, Yu Q Q, et al. Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage. Energy, 2018, 159: 929 doi: 10.1016/j.energy.2018.06.207
|
[12] |
Ma L Y, Wang Q W, Li L P. Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage. Sol Energy Mater Sol Cells, 2019, 194: 215 doi: 10.1016/j.solmat.2019.02.026
|
[13] |
Yang Z W, Deng Y, Li J H. Preparation of porous carbonized woods impregnated with lauric acid as shape-stable composite phase change materials. Appl Therm Eng, 2019, 150: 967 doi: 10.1016/j.applthermaleng.2019.01.063
|
[14] |
Montanari C, Li Y Y, Chen H, et al. Transparent wood for thermal energy storage and reversible optical transmittance. ACS Appl Mater Interfaces, 2019, 11(22): 20465 doi: 10.1021/acsami.9b05525
|
[15] |
Li Y Q, Samad Y A, Polychronopoulou K, et al. From biomass to high performance solar-thermal and electric-thermal energy conversion and storage materials. J Mater Chem A, 2014, 2(21): 7759 doi: 10.1039/C4TA00839A
|
[16] |
Wei Y H, Li J J, Sun F R, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents. Green Chem, 2018, 20(8): 1858 doi: 10.1039/C7GC03595K
|
[17] |
Yang J, Zhang E W, Li X F, et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon, 2016, 98: 50 doi: 10.1016/j.carbon.2015.10.082
|
[18] |
申天偉, 陸少鋒, 辛成, 等. 微膠囊相變材料的研究進展. 紡織導報, 2017(1):69
Shen T W, Lu S F, Xin C, et al. Progress in the research of microcapsule phase-change materials. China Textile Leader, 2017(1): 69
|
[19] |
Aftab W, Huang X Y, Wu W H, et al. Nanoconfined phase change materials for thermal energy applications. Energy Environ Sci, 2018, 11(6): 1392 doi: 10.1039/C7EE03587J
|
[20] |
王俊霞, 王軍, 黃崇杏, 等. 多壁碳納米管/硬脂酸?十八醇@脲醛樹脂微膠囊的制備及表征. 復合材料學報, 2019, 36(3):730
Wang J X, Wang J, Huang C X, et al. Preparation and characterization of MWCNTs/stearic acid-octadecyl alcohol@urea formaldehyde resin phase change microencasules. Acta Mater Compos Sin, 2019, 36(3): 730
|
[21] |
Lian Q S, Li K, Sayyed A A S, et al. Study on a reliable epoxy-based phase change material: facile preparation, tunable properties, and phase/microphase separation behavior. J Mater Chem A, 2017, 5(28): 14562 doi: 10.1039/C7TA02816D
|
[22] |
Lian Q S, Li Y, Sayyed A A S, et al. Facile strategy in designing epoxy/paraffin multiple phase change materials for thermal energy storage applications. ACS Sustainable Chem Eng, 2018, 6(3): 3375 doi: 10.1021/acssuschemeng.7b03558
|
[23] |
Zhang G H, Bon S A F, Zhao C Y. Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. Sol Energy, 2012, 86(5): 1149 doi: 10.1016/j.solener.2012.01.003
|
[24] |
Wang Y, Wang J P, Nan G H, et al. A novel method for the preparation of narrow-disperse nanoencapsulated phase change materials by phase inversion emulsification and suspension polymerization. Ind Eng Chem Res, 2015, 54(38): 9307 doi: 10.1021/acs.iecr.5b01026
|
[25] |
Wang H, Luo J, Yang Y Y, et al. Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance. Sol Energy, 2016, 139: 591 doi: 10.1016/j.solener.2016.10.011
|
[26] |
Zhu Y L, Liang S E, Wang H, et al. Morphological control and thermal properties of nanoencapsulated n-octadecane phase change material with organosilica shell materials. Energy Convers Manage, 2016, 119: 151 doi: 10.1016/j.enconman.2016.04.049
|
[27] |
Fan S, Gao H Y, Dong W J, et al. Shape-stabilized phase change materials based on stearic acid and mesoporous hollow SiO2 microspheres (SA/SiO2) for thermal energy storage. Eur J Inorg Chem, 2017, 2017(14): 2138 doi: 10.1002/ejic.201601380
|
[28] |
Yin D Z, Liu H, Ma L, et al. Fabrication and performance of microencapsulated phase change materials with hybrid shell by in situ polymerization in pickering emulsion. Polym Adv Technol, 2015, 26(6): 613 doi: 10.1002/pat.3495
|
[29] |
Chen C Z, Zhao Y Y, Liu W M. Electrospun polyethylene glycol/cellulose acetate phase change fibers with core-sheath structure for thermal energy storage. Renewable Energy, 2013, 60: 222 doi: 10.1016/j.renene.2013.05.020
|
[30] |
Babapoor A, Karimi G, Golestaneh S I, et al. Coaxial electro-spun PEG/PA6 composite fibers: fabrication and characterization. Appl Therm Eng, 2017, 118: 398 doi: 10.1016/j.applthermaleng.2017.02.119
|
[31] |
Xi P, Zhao T X, Xia L, et al. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties. Sci Rep, 2017, 7: 40390 doi: 10.1038/srep40390
|
[32] |
Chen Y, Ding H, Gao J K, et al. A novel strategy for enhancing the thermal conductivity of shape-stable phase change materials via carbon-based in situ reduction of metal ions. J Clean Prod, 2020, 243: 118627 doi: 10.1016/j.jclepro.2019.118627
|
[33] |
Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy, 2013, 112: 1357 doi: 10.1016/j.apenergy.2013.04.050
|
[34] |
Qian T T, Zhu S K, Wang H L, et al. Comparative study of single-walled carbon nanotubes and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of PEG-infiltrated phase-change material composites. ACS Sustainable Chem Eng, 2019, 7(2): 2446 doi: 10.1021/acssuschemeng.8b05335
|
[35] |
Ling Z Y, Chen J J, Xu T, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Convers Manage, 2015, 102: 202 doi: 10.1016/j.enconman.2014.11.040
|
[36] |
Yu S Y, Wang X D, Wu D Z. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Appl Energy, 2014, 114: 632 doi: 10.1016/j.apenergy.2013.10.029
|
[37] |
Jiang X, Luo R L, Peng F F, et al. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy, 2015, 137: 731 doi: 10.1016/j.apenergy.2014.09.028
|
[38] |
Zhou Y, Liu X D, Sheng D K, et al. Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage. Chem Eng J, 2018, 338: 117 doi: 10.1016/j.cej.2018.01.021
|
[39] |
Li G Y, Zhang X T, Wang J, et al. From anisotropic graphene aerogels to electron-and photo-driven phase change composites. J Mater Chem A, 2016, 4(43): 17042 doi: 10.1039/C6TA07587H
|
[40] |
Zhang Y A, Wang J S, Qiu J J, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity. Appl Energy, 2019, 237: 83 doi: 10.1016/j.apenergy.2018.12.075
|
[41] |
Aftab W, Mahmood A, Guo W H, et al. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater, 2019, 20: 401 doi: 10.1016/j.ensm.2018.10.014
|
[42] |
Guo X F, Liu C, Li N, et al. Electrothermal conversion phase change composites: the case of polyethylene glycol infiltrated graphene oxide/carbon nanotube networks. Ind Eng Chem Res, 2018, 57(46): 15697 doi: 10.1021/acs.iecr.8b03093
|
[43] |
田國華. 相變儲能建筑墻體傳熱特性及能耗影響研究[學位論文]. 徐州: 中國礦業大學, 2018
Tian G H. Study on Heat Transfer Characteristics and Energy Consumption Influence of Phase Change Energy Storage Building Walls[Dissertation]. Xuzhou: China University of Mining and Technology, 2018
|
[44] |
Wang S M, Matia?ovsky P, Mihálka P, et al. Experimental investigation of the daily thermal performance of a mPCM honeycomb wallboard. Energy Build, 2018, 159: 419 doi: 10.1016/j.enbuild.2017.10.080
|
[45] |
Barzin R, Chen J J J, Young B R, et al. Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system. Appl Energy, 2015, 148: 39 doi: 10.1016/j.apenergy.2015.03.027
|
[46] |
Silva T, Vicente R, Amaral C, et al. Thermal performance of a window shutter containing PCM: numerical validation and experimental analysis. Appl Energy, 2016, 179: 64 doi: 10.1016/j.apenergy.2016.06.126
|
[47] |
謝靜超, 王未, 劉加平, 等. 相變木塑圍護結構熱工性能實驗與數值模擬. 北京工業大學學報, 2014, 40(8):1174
Xie J C, Wang W, Liu J P, et al. Experiment and numerical simulation of the thermal performance of phase change wood-plastic envelopes. J Beijing Univ Technol, 2014, 40(8): 1174
|
[48] |
Papadimitratos A, Sobhansarbandi S, Pozdin V, et al. Evacuated tube solar collectors integrated with phase change materials. Sol Energy, 2016, 129: 10 doi: 10.1016/j.solener.2015.12.040
|
[49] |
Kabeel A E, Khalil A, Shalaby S M, et al. Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Convers Manage, 2016, 113: 264 doi: 10.1016/j.enconman.2016.01.068
|
[50] |
刁彥華, 汪順, 趙耀華, 等. 平板微熱管陣列相變蓄熱裝置蓄/放熱性能. 北京工業大學學報, 2016, 42(10):1552
Diao Y H, Wang S, Zhao Y H, et al. Charging/discharging performance of flat micro-heat pipe array thermal storage device. J Beijing Univ Technol, 2016, 42(10): 1552
|
[51] |
Lopez J M, Caceres G, Barrio E P D, et al. Confined melting in deformable porous media: a first attempt to explain the graphite/salt composites behaviour. Int J Heat Mass Transfer, 2010, 53(5-6): 1195 doi: 10.1016/j.ijheatmasstransfer.2009.10.025
|
[52] |
Muratore C, Aouadi S M, Voevodin A A. Embedded phase change material microinclusions for thermal control of surfaces. Surf Coat Technol, 2012, 206(23): 4828 doi: 10.1016/j.surfcoat.2012.05.030
|
[53] |
Tomizawa Y, Sasaki K, Kuroda A, et al. Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices. Appl Therm Eng, 2016, 98: 320 doi: 10.1016/j.applthermaleng.2015.12.056
|
[54] |
Wu W H, Huang X Y, Li K, et al. A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion. Appl Energy, 2017, 190: 474 doi: 10.1016/j.apenergy.2016.12.159
|
[55] |
Shen C F, Li X, Yang G Q, et al. Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management. Chem Eng J, 2020, 385: 123958 doi: 10.1016/j.cej.2019.123958
|