Citation: | YANG Yi-xuan, YANG Jin, ZHANG Wei, WANG Min, LI Lan-Xin, LI Xin. Effect of inclusions on corrosion resistance of carbon steel[J]. Chinese Journal of Engineering, 2020, 42(S): 27-33. doi: 10.13374/j.issn2095-9389.2020.03.25.s05 |
[1] |
陳學群, 常萬順, 陳德斌. 碳鋼中夾雜物誘發點蝕的規律和特性研究. 海軍工程大學學報, 2004, 16(6):30 doi: 10.3969/j.issn.1009-3486.2004.06.006
Chen X Q, Chang W S, Chen D B. Law and feature of pitting caused by inclusion in carbon steel. J Naval Univ Eng, 2004, 16(6): 30 doi: 10.3969/j.issn.1009-3486.2004.06.006
|
[2] |
馬軍紅, 樸占龍, 王雁, 等. Q235鋼中顯微夾雜物行為研究. 上海金屬, 2017, 39(2):55 doi: 10.3969/j.issn.1001-7208.2017.02.012
Ma J H, Piao Z L, Wang Y, et al. Research on behavior of micro-inclusions in Q235 steel. Shanghai Met, 2017, 39(2): 55 doi: 10.3969/j.issn.1001-7208.2017.02.012
|
[3] |
鄭萬, 熊珊, 李天佑, 等. 夾雜物對低合金鋼點蝕誘發敏感性的影響. 煉鋼, 2017, 33(5):31
Zheng W, Xiong S, Li T Y, et al. Effect of inclusions on pitting susceptibility in low alloy steel. Steelmaking, 2017, 33(5): 31
|
[4] |
Avci R, Davis B H, Wolfenden M L, et al. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media. Corros Sci, 2013, 76: 267 doi: 10.1016/j.corsci.2013.06.049
|
[5] |
杜旭東, 王峰, 高藝, 等. 熱處理工藝對Mg?7Al?1Ca?0.5Sn合金力學與腐蝕性能的影響研究. 稀有金屬, 2019, 43(12):1283
Du X D, Wang F, Gao Y, et al. Effect of heat treatment process on mechanical and corrosion properties of Mg?7Al?1Ca?0.5Sn alloy. Chin J Rare Met, 2019, 43(12): 1283
|
[6] |
張春亞, 張奇, 李繼高, 等. 碳鋼及低合金鋼在氯離子溶液中夾雜物誘發點蝕位置顯微腐蝕實驗探討. 冶金分析, 2014, 34(1):22
Zhang C Y, Zhang Q, Li J G, et al. Micro-corrosion test research on pitting initiation site of the inclusions of carbon steel and low alloy steel in chlorine ion solution. Metall Anal, 2014, 34(1): 22
|
[7] |
張文梅, 紀紅, 馬通達, 等. 15% SiCp/2009Al復合材料在3.5% NaCl溶液中的腐蝕行為. 稀有金屬, 2018, 42(5):516
Zhang W M, Ji H, Ma T D, et al. Corrosion behaviors of 15% SiCp/2009Al composite in 3.5% NaCl solution. Chin J Rare Met, 2018, 42(5): 516
|
[8] |
Ray G P, Jarman R A, Thomas J G. The influence of non-metallic inclusions on the corrosion fatigue of mild steel. Corros Sci, 1985, 25(3): 171 doi: 10.1016/0010-938X(85)90093-9
|
[9] |
Krawiec H, Vignal V, Heintz O, et al. Influence of the dissolution of MnS inclusions under free corrosion and potentiostatic conditions on the composition of passive films and the electrochemical behaviour of stainless steels. Electrochim Acta, 2006, 51(16): 3235 doi: 10.1016/j.electacta.2005.09.015
|
[10] |
Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3, inclusions on the localized corrosion of Q460NH weathering steel in marine environment. Corros Sci, 2018, 138: 96 doi: 10.1016/j.corsci.2018.04.007
|
[11] |
Zhu T W, Huang F, Liu J, et al. Effects of inclusion on corrosion resistance of weathering steel in simulated industrial atmosphere. Anti-Corros Methods Mater, 2016, 63(6): 490 doi: 10.1108/ACMM-05-2015-1538
|
[12] |
武會賓, 王迪, 梁金明, 等. 夾雜物對低合金鋼在酸性Cl?溶液環境中點蝕行為的影響. 材料熱處理學報, 2014, 35(12):172
Wu H B, Wang D, Liang J M, et al. Influence of inclusion on pitting corrosion behavior of low-alloy steel for bottom plates of cargo oil tanks. Trans Mater Heat Treat, 2014, 35(12): 172
|
[13] |
Guo J, Cheng S S, Guo H J, et al. Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium. Int J Miner Metall Mater, 2018, 25(3): 280 doi: 10.1007/s12613-018-1571-1
|
[14] |
Li X, Bao Y P, Wang M. Peeling defects of cold rolled interstitial-free steel sheet due to inclusion movement. Ironmaking Steelmaking, 2020, 47(1): 1 doi: 10.1080/03019233.2018.1483592
|
[15] |
Yang L, Cheng G G. Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel. Int J Miner Metall Mater, 2017, 24(8): 869 doi: 10.1007/s12613-017-1472-8
|
[16] |
張峰, 陳惠芬, 柴鋒, 等. 夾雜物對Cr?Ni系高強度鋼耐蝕性能的影響. 鋼鐵研究學報, 2017, 29(11):945
Zhang F, Chen H F, Chai F, et al. Effect of inclusions on corrosion resistance of Cr?Ni high-strength steels. J Iron Steel Res, 2017, 29(11): 945
|
[17] |
Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking. Corros Sci, 2011, 53(4): 1201 doi: 10.1016/j.corsci.2010.12.011
|
[18] |
Li Y B, Liu J, Deng Y D, et al. Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution. J Alloys Compd, 2016, 673: 28 doi: 10.1016/j.jallcom.2016.02.224
|
[19] |
Fushimi K, Takabatake Y, Nakanishi T, et al. Microelectrode techniques for corrosion research of iron. Electrochim Acta, 2013, 113: 741 doi: 10.1016/j.electacta.2013.03.021
|
[20] |
Oltra R, Vignal V. Recent advances in local probe techniques in corrosion research— —Analysis of the role of stress on pitting sensitivity. Corros Sci, 2007, 49(1): 158 doi: 10.1016/j.corsci.2006.05.032
|
[21] |
Maack B, Nilius N. In-situ optical view onto copper oxidation— —role of reactive interfaces and self-heating. Corros Sci, 2019, 159: 108112 doi: 10.1016/j.corsci.2019.108112
|
[22] |
Dastgerdi A A, Brenna A, Ormellese M, et al. Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel. Corros Sci, 2019, 159: 108160 doi: 10.1016/j.corsci.2019.108160
|
[23] |
Fulton G, Lunev A. Probing the correlation between phase evolution and growth kinetics in the oxide layers of tungsten using Raman spectroscopy and EBSD. Corros Sci, 2020, 162: 108221 doi: 10.1016/j.corsci.2019.108221
|
[24] |
Diler E, Rioual S, Lescop B, et al. Chemistry of corrosion products of Zn and MgZn pure phases under atmospheric conditions. Corros Sci, 2012, 65: 178 doi: 10.1016/j.corsci.2012.08.014
|
[25] |
Singh J K, Singh D D N. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH. Corros Sci, 2012, 56: 129 doi: 10.1016/j.corsci.2011.11.012
|