Citation: | Lü Ming, MI Xiao-yu, ZHANG Zhao-hui, ZHI Xu-bo, FENG Lu. Effect of continuous-casting parameters on carbon segregation in SWRH82B high-carbon steel[J]. Chinese Journal of Engineering, 2020, 42(S): 102-108. doi: 10.13374/j.issn2095-9389.2020.03.20.s09 |
[1] |
李平, 王雷, 周青峰. 82B中心網狀滲碳體產生原因及改善方法. 鋼鐵研究學報, 2014, 26(9):33
Li P, Wang L, Zhou Q F. Formation reasons and countermeasures of cementite network in the center of 82B wire rods. J Iron Steel Res, 2014, 26(9): 33
|
[2] |
張游游, 劉建華, 蘇曉峰, 等. BOF-LF-CC生產SWRH82B硬線鋼的潔凈度研究. 工程科學學報, 2016, 38(增刊1): 160
Zhang Y Y, Liu J H, Su X F, et al. Cleanliness study of SWRH82B hard wire steel produced by BOF-LF-CC processes. Chin J Eng, 2016, 38(Suppl 1): 160
|
[3] |
Zhang J Q, Liang Y L, Xiang S, et al. Effect of heat treatment process on microstructure and mechanical properties of SWRS82B wire rod. Adv Mater Res, 2010, 97-101: 752 doi: 10.4028/www.scientific.net/AMR.97-101.752
|
[4] |
劉少偉, 韓延申, 管敏, 等. 基于過熱度變化的82B鋼連鑄末端電攪位置研究. 鋼鐵研究學報, 2018, 30(9):716
Liu S W, Han Y S, Guan M, et al. Research on final-electromagnetic stirring position of 82B steel continuous casting based on superheat variation. J Iron Steel Res, 2018, 30(9): 716
|
[5] |
桂美文, 覃之光. 82B高碳鋼連鑄坯中心偏析及線材質量的改善. 煉鋼, 2005, 21(3):1 doi: 10.3969/j.issn.1002-1043.2005.03.001
Gui M W, Qin Z G. Improvement in central segregation of 82B high carbon steel bloom and quality of wire rod. Steelmaking, 2005, 21(3): 1 doi: 10.3969/j.issn.1002-1043.2005.03.001
|
[6] |
Park J H. Thermodynamic investigation on the formation of inclusions containing MgAl2O4 spinel during 16Cr–14Ni austenitic stainless steel manufacturing processes. Mater Sci Eng A, 2008, 472(1-2): 43 doi: 10.1016/j.msea.2007.03.011
|
[7] |
柴國強, 王福明, 付軍, 等. 高碳硬線鋼82B中Al2O3–SiO2–MgO–CaO–MnO系夾雜物塑性化控制. 北京科技大學學報, 2010, 32(6):730
Chai G Q, Wang F M, Fu J, et al. Deformability control of Al2O3–SiO2–MgO–CaO–MnO system inclusions in high carbon hard wire 82B steel. J Univ Sci Technol Beijing, 2010, 32(6): 730
|
[8] |
金桂香, 王福明, 付軍, 等. 82B高碳鋼盤條中馬氏體成因. 材料熱處理學報, 2013, 34(6):62
Jin G X, Wang F M, Fu J, et al. Formation of martensite in 82B high carbon steel wire rod. Trans Mater Heat Treat, 2013, 34(6): 62
|
[9] |
李俊杰, Andrew Godfrey, 劉偉. 奧氏體化與冷卻速率對過共析鋼組織的影響. 金屬學報, 2013, 49(5):583 doi: 10.3724/SP.J.1037.2012.00699
Li J J, Andrew G, Liu W. Effect of austenitization and cooling rates on the microstructure in a hyper-eutectoid steel. Acta Metall Sin, 2013, 49(5): 583 doi: 10.3724/SP.J.1037.2012.00699
|
[10] |
Zhang Y D, Esling C, Gong M L, et al. Microstructural features induced by a high magnetic field in a hypereutectoid steel during austenitic decomposition. Scripta Mater, 2006, 54(11): 1897 doi: 10.1016/j.scriptamat.2006.02.009
|
[11] |
張朝暉, 吳海龍, 馮璐, 等. 數值模擬技術在連鑄結晶器中的應用. 鋼鐵研究學報, 2016, 28(5):1
Zhang Z H, Wu H L, Feng L, et al. Application of numerical simulation technologies for continuous casting mold. J Iron Steel Res, 2016, 28(5): 1
|
[12] |
Zeng J, Chen W. Effect of casting speed on solidification structure and central macrosegregation during continuous casting of high-carbon rectangular billet. Metall Ital, 2015, 107(7): 43
|
[13] |
張志祥, 閔義, 姜茂發. 37Mn5連鑄圓坯凝固過程數學模擬. 東北大學學報: 自然科學版, 2010, 31(7):966
Zhang Z X, Min Y, Jiang M F. Mathematical simulation of continuous casting process of round billet solidification of 37Mn5 steel. J Northeast Univ Nat Sci, 2010, 31(7): 966
|
[14] |
蘇旺, 姜東濱, 羅森, 等. 方坯連鑄凝固末端電磁攪拌工藝優化的數值模擬. 東北大學學報: 自然科學版, 2013, 34(5):673
Su W, Jiang D B, Luo S, et al. Numerical simulation for optimization of F-EMS in billet continuous casting. J Northeast Univ Nat Sci, 2013, 34(5): 673
|
[15] |
胡亮, 郭紅民, 段少平. 凝固末端電磁攪拌對82B碳偏析的影響. 中國冶金, 2018, 28(9):63
Hu L, Guo H M, Duan S P. Effect of F-EMS on carbon segregation of 82B. China Metall, 2018, 28(9): 63
|
[16] |
馮璐, 解西東, 巨建濤, 等. 八機八流中間包流場溫度場數值模擬. 鑄造技術, 2017, 38(4):881
Feng L, Xie X D, Ju J T, et al. Numerical simulation of flow field and temperature field in 8-machine 8-strand tundish. Foundry Technol, 2017, 38(4): 881
|
[17] |
馮璐, 焦志遠, 張朝暉, 等. 八機八流中間包內夾雜物運動行為數值模擬. 鑄造技術, 2018, 39(5):1008
Feng L, Jiao Z Y, Zhang Z H, et al. Numerical simulation of inclusion behavior in 8-machine and 8-strand tundish. Foundry Technol, 2018, 39(5): 1008
|
[18] |
秦緒鋒, 程常桂, 李陽, 等. 上水口環形吹氬對中間包內渣眼形成的影響. 鋼鐵, 2019, 54(8):107
Qin X F, Cheng C G, Li Y, et al. Effect of annular argon blowing at upper nozzle on formation of slag eye in tundish. Iron Steel, 2019, 54(8): 107
|
[19] |
盧海彪, 程常桂, 張豐, 等. 中間包底吹氬工藝優化的模擬研究. 武漢科技大學學報, 2018, 41(1):1
Lu H B, Cheng C G, Zhang F, et al. Simulation study on process optimization of bottom argon blowing in tundish. J Wuhan Univ Sci Technol, 2018, 41(1): 1
|
[20] |
Li L M, Li B K. Investigation of bubble-slag layer behaviors with hybrid Eulerian–Lagrangian modeling and large eddy simulation. JOM, 2016, 68(8): 2160 doi: 10.1007/s11837-016-1849-6
|
[21] |
Qin X F, Cheng C G, Li Y, et al. A simulation study on the flow behavior of liquid steel in tundish with annular argon blowing in the upper nozzle. Metals, 2019, 9(2): 225 doi: 10.3390/met9020225
|
[22] |
Chatterjee S, Chattopadhyay K. Tundish open eye formation in inert gas-shrouded tundishes: a macroscopic model from first principles. Metall Mater Trans B, 2016, 47(5): 3099 doi: 10.1007/s11663-016-0757-z
|
[23] |
張德俊, 江學德, 陳永金, 等. 柳鋼3號方坯連鑄機生產SWRH82B實踐. 柳鋼科技, 2018(4):10
Zhang D J, Jiang X D, Chen Y J, et al. Practice of SWRH82B production by No. 3 billet continuous caster in Liuzhou steel. Sci Technol Liuzhou Steel, 2018(4): 10
|
[24] |
劉鳳云, 張一夫. 連鑄高碳鋼坯凝固基礎理論淺探. 煉鋼, 1993(2):56
Liu F Y, Zhang Y F. Superficial view on basic solidification theory of CC high carbon steel. Steelmaking, 1993(2): 56
|
[25] |
陳志平. 非穩態澆鑄條件下連鑄板坯質量控制研究[學位論文]. 沈陽: 東北大學, 2008
Chen Z P. Study on the Control of Continuous Casting Slab Quality under Unsteady Casting Conditions[Dissertation]. Shenyang: Northeastern University, 2008
|