Citation: | JIANG Dong-bin, ZHI Jian-guo, SONG Hai, GAO Yong, ZHANG Li-feng. Numerical simulation of dehydrogenation annealing in bloom[J]. Chinese Journal of Engineering, 2020, 42(7): 862-868. doi: 10.13374/j.issn2095-9389.2020.03.16.003 |
[1] |
Liu Q L, Zhou Q J, Venezuela J, et al. A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction. Corros Rev, 2016, 34(3): 127 doi: 10.1515/corrrev-2015-0083
|
[2] |
胡振華. 改善120 t VD脫氫效果的研究. 金屬材料與冶金工程, 2014, 42(2):36
Hu Z H. Improvement of hydrogen removal from 120 t VD. Met Mater Metall Eng, 2014, 42(2): 36
|
[3] |
陳愛梅. 薄板廠210 t RH脫氣工藝研究. 特殊鋼, 2012, 33(6):16 doi: 10.3969/j.issn.1003-8620.2012.06.005
Chen A M. A study on 210 t RH vacuum degas process at a sheet works. Special Steel, 2012, 33(6): 16 doi: 10.3969/j.issn.1003-8620.2012.06.005
|
[4] |
Zhu B H, Chattopadhyay K, Hu X P, et al. Optimization of sampling location in the ladle during RH vacuum refining process. Vacuum, 2018, 152: 30 doi: 10.1016/j.vacuum.2018.02.033
|
[5] |
Ling H T, Zhang L F. Numerical simulation of gas and liquid two-phase flow in the RH process. Metall Mater Trans B, 2019, 50(4): 2017 doi: 10.1007/s11663-019-01583-3
|
[6] |
Mukherjee D, Shukla A K, Senk D. Prediction of decarburisation process along with hydrogen and nitrogen removal by mathematical modelling of RH degassing process. Ironmaking Steelmaking, 2018, 45(5): 412 doi: 10.1080/03019233.2016.1274847
|
[7] |
Chen G J, He S P. Circulation flow rate and decarburization in the RH degasser under low atmospheric pressure. Vacuum, 2018, 153: 132 doi: 10.1016/j.vacuum.2018.04.007
|
[8] |
Wei J H. Mathematical modeling of the vacuum circulation refining process of molten steel. J Shanghai Univ, 2003, 7(2): 97 doi: 10.1007/s11741-003-0077-9
|
[9] |
Bucur L, Bucur G, Moise A G, et al. Finite element method applied to mathematical modelling of the hydrogen diffusion process in metals. Rev Chim, 2016, 67(1): 87
|
[10] |
張鳳春, 張小山, 李春福, 等. α-Fe和γ-Fe中氫擴散行為的第一性原理計算. 原子與分子物理學報, 2020, 37(3):397
Zhang F C, Zhang X S, Li C F, et al. First-principles calculations on the diffusion behaviors of hydrogen atom in α-Fe and γ-Fe. J Atom Mol Phys, 2020, 37(3): 397
|
[11] |
劉曉坤, 王建軍, 路民旭, 等. 金屬內氫擴散過程的邊界元分析. 西安石油學院學報, 1992, 7(1):24
Liu X K, Wang J J, Lu M X, et al. An analysisof hydrogen diffusion process in metals by boundary element analysis. J Xi'an Petrol Inst, 1992, 7(1): 24
|
[12] |
陶平, 王艷飛, 鞏建鳴, 等. 氫在雙相不銹鋼中的擴散模擬. 上海交通大學學報, 2018, 52(9):1086
Tao P, Wang Y F, Gong J M, et al. Simulation of hydrogen diffusion in duplex stainless steel. J Shanghai Jiaotong Univ, 2018, 52(9): 1086
|
[13] |
范俊鍇, 侯高杰, 彭波, 等. 微觀視域下鋼內氫的溫度激發擴散模型及影響因素. 金屬熱處理, 2019, 44(3):197
Fan J K, Hou G J, Peng B, et al. Activation and diffusion model of hydrogen in steel under microcosmic condition and its influencing factors. Heat Treat Met, 2019, 44(3): 197
|
[14] |
游佳迪, 楊弋濤, 張洪奎, 等. Cr5鋼錠去氫退火過程的數學模擬. 上海金屬, 2011, 33(1):59 doi: 10.3969/j.issn.1001-7208.2011.01.013
You J D, Yang Y T, Zhang H K, et al. Numerical simulation to dehydrogenation annealing process of Cr5 steel. Shanghai Met, 2011, 33(1): 59 doi: 10.3969/j.issn.1001-7208.2011.01.013
|
[15] |
譚天宇, 杜鳳山, 李杰, 等. 大型鍛件中氫擴散的研究. 塑性工程學報, 2017, 24(1):180
Tan T Y, Du F S, Li J, et al. Finite element analysis of hydrogen diffusion in large forgings. J Plast Eng, 2017, 24(1): 180
|
[16] |
楊東, 許少普, 黃紅乾, 等. 鋼板中氫擴散的數值模擬. 鋼鐵研究, 2016, 44(1):19
Yang D, Xu S P, Huang H Q, et al. Numerical simulation of hydrogen diffusion in steel plate. Res Iron Steel, 2016, 44(1): 19
|
[17] |
王衛華, 李戰軍, 初仁生, 等. 堆冷方式下板坯氫擴散效果. 鋼鐵, 2019, 54(11):49
Wang W H, Li Z J, Chu R S, et al. Hydrogen diffusion in slab for stacking slow-cooling. Iron Steel, 2019, 54(11): 49
|
[18] |
Tao P, Gong J M, Wang Y F, et al. Modeling of hydrogen diffusion in duplex stainless steel based on microstructure using finite element method. Int J Pressure Vessels Piping, 2020, 180: 104031 doi: 10.1016/j.ijpvp.2019.104031
|
[19] |
Sezgin J G, Bosch C, Montouchet A, et al. Modelling and simulation of hydrogen redistribution in a heterogeneous alloy during the cooling down to 200 ℃. Int J Hydrogen Energy, 2017, 42(30): 19346 doi: 10.1016/j.ijhydene.2017.03.095
|
[20] |
Yan C Y, Liu C Y, Yan B. 3D modeling of the hydrogen distribution in X80 pipeline steel welded joints. Comput Mater Sci, 2014, 83: 158 doi: 10.1016/j.commatsci.2013.11.007
|
[21] |
Li L F, Song B, Cai Z Y, et al. Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel. Mater Sci Eng A, 2019, 742: 712 doi: 10.1016/j.msea.2018.09.048
|
[22] |
Ilin D N, Saintier N, Olive J M, et al. Simulation of hydrogen diffusion affected by stress-strain heterogeneity in polycrystalline stainless steel. Int J Hydrogen Energy, 2014, 39(5): 2418 doi: 10.1016/j.ijhydene.2013.11.065
|
[23] |
江鵬, 袁同心, 肖思進, 等. 熱處理工藝對V-Ti-Ni氫分離合金顯微組織和硬度的影響. 稀有金屬, 2018, 42(12):1260
Jiang P, Yuan T X, Chen W X, et al. Microstructure and mechanical properties of V-Ti-Ni alloy for hydrogen separation with heat treatment process. Chin J Rare Met, 2018, 42(12): 1260
|
[24] |
崔麗, 高艷, 顧長石, 等. 微量元素Cr對船用耐蝕鋼焊接接頭組織和性能的影響. 北京工業大學學報, 2018, 44(6):953
Cui L, Gao Y, Gu C S, et al. Effect of trace element Cr on microstructures and properties of welded joints of marine corrosion resisting steels. J Beijing Univ Technol, 2018, 44(6): 953
|
[25] |
Olden V, Saai A, Jemblie L, et al. FE simulation of hydrogen diffusion in duplex stainless steel. Int J Hydrogen Energy, 2014, 39(2): 1156 doi: 10.1016/j.ijhydene.2013.10.101
|
[26] |
冼愛平, 李培基, 陳文繡, 等. 攀鋼重軌鋼初軋坯堆冷的除氫效果. 金屬學報, 1993, 29(6):A273
Xian A P, Li P J, Chen W X, et al. Hydrogen escape form heavy rail steel bloom by stack cooling at Panzhihua iron and steel company. Acta Metall Sinica, 1993, 29(6): A273
|