Citation: | LI Zi-liang, XU Zhi-feng, ZHANG Xi, ZAN Miao-miao, LIU Zhi-lou. Mercury recovery from acidic mercury solution using electrodeposition[J]. Chinese Journal of Engineering, 2020, 42(8): 999-1006. doi: 10.13374/j.issn2095-9389.2020.03.15.001 |
[1] |
盧光華, 岳昌盛, 彭犇, 等. 汞污染土壤修復技術的研究進展. 工程科學學報, 2017, 39(1):1
Lu G H, Yue C S, Peng B, et al. Review of research progress on the remediation technology of mercury contaminated soil. <italic>Chin J Eng</italic>, 2017, 39(1): 1
|
[2] |
劉開宇, 李元高, 唐有根, 等. 聚乙烯醇-丁基羅丹明B分光光度法測定電池及廢水中的痕量汞(II). 江西有色金屬, 2001, 15(1):37 doi: 10.3969/j.issn.1674-9669.2001.01.012
Liu K Y, Li Y G, Tang Y G, et al. Spectrophotometric determination of trace Hg (II) in battery and waste water by polyvinyl alcohol-butyl rhodamine B. <italic>Jiangxi Nonferrous Met</italic>, 2001, 15(1): 37 doi: 10.3969/j.issn.1674-9669.2001.01.012
|
[3] |
Liu Z L, Li Z L, Xie X F, et al. Development of recyclable iron sulfide/selenide microparticles with high performance for elemental mercury capture from smelting flue gas over a wide temperature range. <italic>Environ Sci Technol</italic>, 2020, 54(1): 604
|
[4] |
師艷麗, 陳明, 李鳳果, 等. 土壤重金屬污染修復技術研究進展. 有色金屬科學與工程, 2018, 9(5):66
Shi Y L, Chen M, Li F G, et al. Advances in remediation techniques for soil heavy metal pollution. <italic>Nonferrous Met Sci Eng</italic>, 2018, 9(5): 66
|
[5] |
閆利剛, 李季, 孫堯, 等. 高濃度含汞鹽泥的穩定化技術工程應用試驗研究. 江西理工大學學報, 2017, 38(1):61
Yan L G, Li J, Sun Y, et al. Application research on stabilization for remediation of salty mud with high mercury concentration. <italic>J Jiangxi Univ Sci Technol</italic>, 2017, 38(1): 61
|
[6] |
劉友存, 劉正芳, 劉基, 等. 贛江上游龍逕河水體氨氮與重金屬污染分布特征及風險評價. 有色金屬科學與工程, 2019, 10(4):85
Liu Y C, Liu Z F, Liu J, et al. Distribution characteristics and risk assessment of ammonia nitrogen and heavy metal pollution in Longjing river, the upstream of Ganjiang river. <italic>Nonferrous Met Sci Eng</italic>, 2019, 10(4): 85
|
[7] |
胡鵬搏, 翁麒宇, 李端樂, 等. 模擬煙氣中氣態痕量元素污染物發生方法的研究現狀. 工程科學學報, https:doi: 10.13374/j.issn2095-9389.2020.03.05.006
Hu P B, Weng L Y, Li D L, et al. Research status for generation methods of gaseous trace element pollutants in simulated flue gas. Chin J Eng, https://doi: 10.13374/j.issn2095-9389.2020.03.05.006
|
[8] |
Liu Z L, Wang D L, Yang S, et al. Selective recovery of mercury from high mercury-containing smelting wastes using an iodide solution system. <italic>J Hazard Mater</italic>, 2019, 363: 179 doi: 10.1016/j.jhazmat.2018.09.001
|
[9] |
Yang S, Wang D L, Liu H, et al. Highly stable activated carbon composite material to selectively capture gas-phase elemental mercury from smelting flue gas: Copper polysulfide modification. <italic>Chem Eng J</italic>, 2019, 358: 1235 doi: 10.1016/j.cej.2018.10.134
|
[10] |
Liu H, Xie X F, Chen H, et al. SO<sub>2</sub> promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury. <italic>Fuel</italic>, 2020, 261: 116367 doi: 10.1016/j.fuel.2019.116367
|
[11] |
Yang S, Liu Z L, Yan X, et al. Catalytic oxidation of elemental mercury in coal-combustion flue gas over the CuAlO<sub>2</sub> catalyst. <italic>Energy Fuels</italic>, 2019, 33(11): 11380 doi: 10.1021/acs.energyfuels.9b02376
|
[12] |
李子良, 徐志峰, 張溪, 等. 有色金屬冶煉煙氣中單質汞脫除研究現狀. 有色金屬科學與工程, 2020, 11(2):20
Li Z L, Xu Z F, Zhang X, et al. Research status of elemental mercury removal from flue gas in non-ferrous metals production. <italic>Nonferrous Met Sci Eng</italic>, 2020, 11(2): 20
|
[13] |
閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767
Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. <italic>Chin J Eng</italic>, 2018, 40(7): 767
|
[14] |
Liu Z L, Peng B, Chai L Y, et al. Selective removal of elemental mercury from high-concentration SO<sub>2</sub> flue gas by thiourea solution and investigation of mechanism. <italic>Ind Eng Chem Res</italic>, 2017, 56(15): 4281 doi: 10.1021/acs.iecr.7b00044
|
[15] |
邱廷省, 唐海峰. 生物吸附法處理重金屬廢水的研究現狀及發展. 南方冶金學院學報, 2003, 24(4):65 doi: 10.3969/j.issn.2095-3046.2003.04.016
Qiu T S, Tang H F. Present situation and development of biosorption treatment for wastewater containing heavy metals. <italic>J Southern Inst Metall</italic>, 2003, 24(4): 65 doi: 10.3969/j.issn.2095-3046.2003.04.016
|
[16] |
陶美霞, 陳明, 楊泉, 等. GIS在土壤重金屬污染評價和安全預警的應用. 有色金屬科學與工程, 2017, 8(6):92
Tao M X, Chen M, Yang Q, et al. Assessment in soil heavy metal pollution and safety pre-warning based on GIS. <italic>Nonferrous Met Sci Eng</italic>, 2017, 8(6): 92
|
[17] |
鐘斌, 曾清全. 硫化沉淀法回收鎳鎂液中的鎳. 有色金屬科學與工程, 2015, 6(2):53
Zhong B, Zeng Q Q. Recovering nickel from nickel-magnesium solution by sulfuration deposition method. <italic>Nonferrous Met Sci Eng</italic>, 2015, 6(2): 53
|
[18] |
李寶磊, 邵春巖, 陳剛, 等. 我國含汞廢水處置技術現狀剖析與對策. 水處理技術, 2018, 44(11):1
Li B L, Shao C Y, Chen G, et al. Status analysis and countermeasures of mercury containing wastewater treatment in China. <italic>Technol Water Treat</italic>, 2018, 44(11): 1
|
[19] |
黎鄒江, 李棟, 許志鵬, 等. 旋流電積在有色冶金中的應用. 有色金屬科學與程, 2019, 10(5):1
Li Z J, Li D, Xu Z P, et al. Application of cyclone electrowinning in non-ferrous metallurgy. <italic>Nonferrous Met Sci Eng</italic>, 2019, 10(5): 1
|
[20] |
張小軍, 黃惠, 董勁, 等. 鋅電積過程中錳元素對鋁陰極的電化學行為影響. 工程科學學報, 2018, 40(7):800
Zhang X J, Huang H, Dong J, et al. Influence of manganese on the electrochemical behavior of an aluminum cathode used in zinc electrowinning. <italic>Chin J Eng</italic>, 2018, 40(7): 800
|
[21] |
何云龍, 徐瑞東, 何世偉, 等. 高鉍鉛陽極泥堿性氧化浸出渣熔煉-電解提鉍研究. 有色金屬科學與工程, 2019, 10(1):41
He Y L, Xu R D, He S W, et al. Research on bismuth extraction from alkaline oxidative leaching residues of bismuth-rich lead anode slime by casting and electrolysis. <italic>Nonferrous Met Sci Eng</italic>, 2019, 10(1): 41
|
[22] |
楊建廣, 李樹超, 李陵晨, 等. 廢銅包鐵針NH<sub>3</sub>-(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>N(CH<sub>2</sub>)<sub>2</sub>NH<sub>2</sub>體系隔膜電解回收銅. 中國有色金屬學報, 2019, 29(8):1721 doi: 10.1016/S1003-6326(19)65079-X
Yang J G, Li S C, Li L C, et al. Copper recovery from scrap copper coated iron needle via membrane electrolysis in NH<sub>3</sub>-(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>N(CH<sub>2</sub>)<sub>2</sub>NH<sub>2</sub> system. <italic>Chin J Nonferrous Met</italic>, 2019, 29(8): 1721 doi: 10.1016/S1003-6326(19)65079-X
|
[23] |
劉艷艷. 電解−電滲析聯合工藝實現含銅廢水資源化研究[學位論文]. 青島: 中國海洋大學, 2009
Liu Y Y. Resources Recovery by the Combined Technology of Electrolysis and Electrodialysis from Copper Wastewater [Dissertation]. Qingdao: Ocean University of China, 2009.
|
[24] |
Lai Y C, Lee W J, Huang K L, et al. Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process. <italic>J Hazard Mater</italic>, 2008, 154(1-3): 588 doi: 10.1016/j.jhazmat.2007.10.061
|
[25] |
許波. 玻利登-諾津克除汞技術及應用. 有色冶煉, 2000, 29(6):10
Xu B. Boliden-Nojenk mercury-removal technology and its application. <italic>Nonferrous Smelting</italic>, 2000, 29(6): 10
|
[26] |
唐冠華. 碘絡合—電解法除汞在硫酸生產中的應用. 有色冶金設計與研究, 2010, 31(3):23 doi: 10.3969/j.issn.1004-4345.2010.03.007
Tang G H. Application of iodine complex-electrolytic method of removing mercury in sulfuric acid production. <italic>Nonferrous Met Eng Res</italic>, 2010, 31(3): 23 doi: 10.3969/j.issn.1004-4345.2010.03.007
|
[27] |
侯鴻斌. 韶關冶煉廠汞回收工藝及生產現狀分析. 湖南有色金屬, 2001, 17(5):18 doi: 10.3969/j.issn.1003-5540.2001.05.008
Hou H B. Mercury recovery process and analysis of mercury production status at Shaoguan smelter. <italic>Hunan Nonferrous Met</italic>, 2001, 17(5): 18 doi: 10.3969/j.issn.1003-5540.2001.05.008
|
[28] |
Fornés J P, Bisang J M. Cathode depassivation using ultrasound for the production of colloidal sulphur by reduction of sulphur dioxide. <italic>Electrochim Acta</italic>, 2016, 213: 186 doi: 10.1016/j.electacta.2016.07.093
|