<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
MIAO Xi-wang, BAI Zhi-tao, LU Guang-hua, LIU Lei, GUO Min, CHENG Fang-qin, ZHANG Mei. Review of comprehensive utilization of typical ferroalloy slags[J]. Chinese Journal of Engineering, 2020, 42(6): 663-679. doi: 10.13374/j.issn2095-9389.2020.03.10.003
Citation: MIAO Xi-wang, BAI Zhi-tao, LU Guang-hua, LIU Lei, GUO Min, CHENG Fang-qin, ZHANG Mei. Review of comprehensive utilization of typical ferroalloy slags[J]. Chinese Journal of Engineering, 2020, 42(6): 663-679. doi: 10.13374/j.issn2095-9389.2020.03.10.003

Review of comprehensive utilization of typical ferroalloy slags

doi: 10.13374/j.issn2095-9389.2020.03.10.003
More Information
  • Corresponding author: E-mail: zhangmei@ustb.edu.cn
  • Received Date: 2020-03-10
  • Publish Date: 2020-06-01
  • Three typical ferroalloy slags, namely, silicon–manganese, nickel–iron, and chrome–iron slags, are produced in large quantities as by-products. This is because they are not efficiently utilized, which creates lots of pressure on environmental capacity and development of enterprises. At present, comprehensive utilization of ferroalloy slags is mainly concentrated on the traditional building materials such as cement and concrete. Although the construction industry consumes a large amount of ferroalloy slags, their high-energy consumption and relatively limited product value limit their maximum utilization. With the increasing market demand and improvement of energy and environmental awareness, the research on rational utilization of ferroalloy slags has been changing from its use as raw materials in traditional building materials to use as raw materials to produce new products with comparatively lower energy consumption and higher product value, which explores the possibility of slag reutilization in other fields. Based on the quality requirements of different ferroalloys, there are significant differences in the requirements of the raw materials and different smelting processes. As a result, different types of ferroalloy slags, having different physical and chemical properties, are produced. This study briefly presented the uses of the silicon–manganese, nickel–iron, and chrome–iron slags. It also showed how to classify these three typical ferroalloy slags. The differences of their chemical and mineral phase composition were also systematically analyzed in this study, which discussed different properties of different slags and provided the basic theoretical guidelines on how to efficiently utilize these slags. This study also emphatically summarized the latest domestic and foreign research advancements about their utilization in traditional building materials such as cement and concrete, and in new functional materials such as geopolymer, inorganic mineral fiber, microcrystalline glass, artificial light aggregate, and refractory materials required to build walls and as alternative raw materials to prepare functional ceramics. Based on the results of this study, we summarized the advantages and disadvantages of using the abovementioned ferroalloy slags as raw materials to generate different materials, and put forward the prospects for its future utilization direction and approach. The study also guided the key development areas for further studying and breaking through the bottleneck of the main utilization mode, formulating and improving the relevant application and pollution control standards, and developing and promoting high value-added products.

     

  • loading
  • [1]
    張亞洲, 李宇, 蒼大強. 鐵合金渣綜合利用的研究現狀及發展趨勢. 冶金能源, 2013, 32(5):44 doi: 10.3969/j.issn.1001-1617.2013.05.012

    Zhang Y Z, Li Y, Cang D Q. Present research and tendency of comprehensive utilization of the ferroalloy-slag. Energy Metall Ind, 2013, 32(5): 44 doi: 10.3969/j.issn.1001-1617.2013.05.012
    [2]
    宋耀欣, 蘭思東, 邸久海, 等. 中國鐵合金爐渣綜合利用現狀與發展趨勢. 中國冶金, 2017, 27(4):73

    Song Y X, Lan S D, Di J H, et al. Present situation and development trend of comprehensive utilization of ferroalloy slag in China. China Metall, 2017, 27(4): 73
    [3]
    Choi S, Kim J, Oh S, et al. Hydro-thermal reaction according to the CaO/SiO2 mole-ratio in silico-manganese slag. J Mater Cycles Waste Manage, 2017, 19(1): 374 doi: 10.1007/s10163-015-0431-6
    [4]
    殷素紅, 馬健, 顏波, 等. 幾種不同鎳渣的特性及其用于水泥和混凝土中的可行性. 硅酸鹽通報, 2019, 38(7):2268

    Yin S H, Ma J, Yan B, et al. Characteristics of several different nickel slags and their feasibility for use in cement and concrete. Bull Chin Ceram Soc, 2019, 38(7): 2268
    [5]
    Choi Y C, Choi S. Alkali-silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions. Constr Build Mater, 2015, 99: 279 doi: 10.1016/j.conbuildmat.2015.09.039
    [6]
    Bai Z T, Qiu G B, Peng B, et al. Synthesis and characterization of glass-ceramics prepared from high-carbon ferrochromium slag. RSC Adv, 2016, 6(58): 52715 doi: 10.1039/C6RA06245H
    [7]
    郝旭濤. 鉻鐵渣活化制備低溫陶瓷膠凝材料[學位論文]. 昆明: 昆明理工大學, 2016

    Hao X T. Preparation of Low Temperature Ceramic Cementitious Materials by Activation of Ferrochrome Slag [Dissertation]. Kunming: Kunming University of Science and Technology, 2016
    [8]
    陸海飛, 田偉光, 徐佳林, 等. 紅土鎳礦冶煉鎳鐵廢渣綜合利用的研究進展. 材料導報, 2018, 32(增刊2): 435

    Lu H F, Tian W G, Xu J L, et al. Research progress on comprehensive utilization of ferronickel slag. Mater Rev, 2018, 32(Suppl 2): 435
    [9]
    李克慶, 馮琳, 高術杰. 鎳渣基礦井充填用膠凝材料的制備. 工程科學學報, 2015, 37(1):1

    Li K Q, Feng L, Gao S J. Preparation of cementitious materials for backfilling by using nickel slag. Chin J Eng, 2015, 37(1): 1
    [10]
    Zhang X F, Ni W, Wu J Y, et al. Hydration mechanism of a cementitious material prepared with Si?Mn slag. Int J Miner Metall Mater, 2011, 18(2): 234 doi: 10.1007/s12613-011-0428-7
    [11]
    Nath S K, Kumar S. Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement. Constr Build Mater, 2016, 125: 127 doi: 10.1016/j.conbuildmat.2016.08.025
    [12]
    Wu Q S, Wu Y, Tong W H, et al. Utilization of nickel slag as raw material in the production of Portland cement for road construction. Constr Build Mater, 2018, 193: 426 doi: 10.1016/j.conbuildmat.2018.10.109
    [13]
    郝旭濤, 周新濤, 蔡發萬, 等. 鉻鐵渣基低溫陶瓷膠凝材料的性能研究. 硅酸鹽通報, 2015, 34(7):2013

    Hao X T, Zhou X T, Cai F W, et al. Property of ferrochrome slag based low-temperature cementitious material. Bull Chin Ceram Soc, 2015, 34(7): 2013
    [14]
    郝旭濤, 周新濤, 羅中秋, 等. 復合型外加劑對鉻鐵渣基復合材料性能的影響. 功能材料, 2015, 46(13):13029 doi: 10.3969/j.issn.1001-9731.2015.13.006

    Hao X T, Zhou X T, Luo Z Q, et al. Effects of compound admixtures on the properties of ferrochrome slag based composite materials. J Funct Mater, 2015, 46(13): 13029 doi: 10.3969/j.issn.1001-9731.2015.13.006
    [15]
    Frías M, de Rojas M I S, Rodríguez C. The influence of SiMn slag on chemical resistance of blended cement pastes. Constr Build Mater, 2009, 23(3): 1472 doi: 10.1016/j.conbuildmat.2008.06.012
    [16]
    Singh G V P B, Subramaniam K V L. Production and characterization of low-energy Portland composite cement from post-industrial waste. J Clean Prod, 2019, 239: 118024 doi: 10.1016/j.jclepro.2019.118024
    [17]
    Rahman M A, Sarker P K, Shaikh F U A, et al. Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag. Constr Build Mater, 2017, 140: 194 doi: 10.1016/j.conbuildmat.2017.02.023
    [18]
    Katsiotis N S, Tsakiridis P E, Velissariou D, et al. Utilization of ferronickel slag as additive in Portland cement: a hydration leaching study. Waste Biomass Valor, 2015, 6(2): 177 doi: 10.1007/s12649-015-9346-7
    [19]
    Alahrache S, Winnefeld F, Champenois J B, et al. Chemical activation of hybrid binders based on siliceous fly ash and Portland cement. Cem Concr Compos, 2016, 66: 10 doi: 10.1016/j.cemconcomp.2015.11.003
    [20]
    Haha M B, Le Saout G, Winnefeld F, et al. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res, 2011, 41(3): 301 doi: 10.1016/j.cemconres.2010.11.016
    [21]
    Piyapanuwat R, Asavapisit S. Performance of lime-BHA solidified plating sludge in the presence of Na2SiO3 and Na2CO3. J Environ Manage, 2011, 92(9): 2222 doi: 10.1016/j.jenvman.2011.04.004
    [22]
    Allahverdi A, Ahmadnezhad S. Mechanical activation of silicomanganese slag and its influence on the properties of Portland slag cement. Powder Technol, 2014, 251: 41 doi: 10.1016/j.powtec.2013.10.023
    [23]
    Kumar S, García-Tri?anes P, Teixeira-Pinto A, et al. Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag. Cem Concr Compos, 2013, 40: 7 doi: 10.1016/j.cemconcomp.2013.03.026
    [24]
    劉梁友, 劉云, 張康, 等. 鎳鐵渣-水泥復合膠凝材料化學活化的研究. 水泥工程, 2016(2):8

    Liu L Y, Liu Y, Zhang K, et al. Study on chemical activation of nickel iron slag-cement composite cementitious material. Cem Eng, 2016(2): 8
    [25]
    Zhou X T, Hao X T, Ma Q M, et al. Effects of compound chemical activators on the hydration of low-carbon ferrochrome slag-based composite cement. J Environ Manage, 2017, 191: 58 doi: 10.1016/j.jenvman.2016.12.048
    [26]
    Navarro R, Alcocel E G, Sánchez I, et al. Mechanical properties of alkali activated ground SiMn slag mortars with different types of aggregates. Constr Build Mater, 2018, 186: 79 doi: 10.1016/j.conbuildmat.2018.07.093
    [27]
    Qi A, Liu X H, Wang Z W, et al. Mechanical properties of the concrete containing ferronickel slag and blast furnace slag powder. Constr Build Mater, 2020, 231: 117120 doi: 10.1016/j.conbuildmat.2019.117120
    [28]
    Acharya P K, Patro S K. Acid resistance, sulphate resistance and strength properties of concrete containing ferrochrome ash (FA) and lime. Constr Build Mater, 2016, 120: 241 doi: 10.1016/j.conbuildmat.2016.05.099
    [29]
    Jena S, Panigrahi R. Performance assessment of geopolymer concrete with partial replacement of ferrochrome slag as coarse aggregate. Constr Build Mater, 2019, 220: 525 doi: 10.1016/j.conbuildmat.2019.06.045
    [30]
    Saha A K, Sarker P K. Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete: mechanical properties and leaching study. J Clean Prod, 2017, 162: 438 doi: 10.1016/j.jclepro.2017.06.035
    [31]
    Shareef U, Cheela V R S, Raju S G. Study on physical and mechanical properties of quartzite and silico-manganese slag as alternative material for coarse aggregate. Int J Sci Res Dev, 2015, 3(09): 72
    [32]
    呂曉昕, 田熙科, 楊超, 等. 錳渣廢棄物在硫磺混凝土生產中的應用. 中國錳業, 2010, 28(2):47 doi: 10.3969/j.issn.1002-4336.2010.02.013

    Lv X X, Tian X K, Yang C, et al. Manganese residues waste on the application of sulfur concrete production. China Manganese Ind, 2010, 28(2): 47 doi: 10.3969/j.issn.1002-4336.2010.02.013
    [33]
    Kim H, Lee C H, Ann K Y. Feasibility of ferronickel slag powder for cementitious binder in concrete mix. Constr Build Mater, 2019, 207: 693 doi: 10.1016/j.conbuildmat.2019.02.166
    [34]
    Liu X M, Li T Y, Tian W G, et al. Study on the durability of concrete with FNS fine aggregate. J Hazard Mater, 2020, 381: 120936 doi: 10.1016/j.jhazmat.2019.120936
    [35]
    Dash M K, Patro S K. Performance assessment of ferrochrome slag as partial replacement of fine aggregate in concrete. Eur J Environ Civil Eng, 2018: 1
    [36]
    Karakoc M B, Türkmen ?, Mara? M M, et al. Sulfate resistance of ferrochrome slag based geopolymer concrete. Ceram Int, 2016, 42(1): 1254 doi: 10.1016/j.ceramint.2015.09.058
    [37]
    Teing T T, Huat B B K, Shukla S K, et al. Effects of alkali-activated waste binder in soil stabilization. Int J GEOMATE, 2019, 17(59): 82
    [38]
    廖希雯, 陳杰, 范天鳳, 等. 地質聚合物固化穩定化重金屬復合污染土壤. 環境工程學報, 2018, 12(7):2056 doi: 10.12030/j.cjee.201712077

    Liao X W, Chen J, Fan T F, et al. Soil of heavy metal composite pollution by geological polymer stabilization. Chin J Environ Eng, 2018, 12(7): 2056 doi: 10.12030/j.cjee.201712077
    [39]
    Yan C J, Guo L, Ren D M, et al. Novel composites based on geopolymer for removal of Pb (II). Mater Lett, 2019, 239: 192 doi: 10.1016/j.matlet.2018.12.105
    [40]
    李巧云, 賀艷, 徐夢雪, 等. 地質聚合物基無機膜去除水中鈣、鎂離子的研究. 功能材料, 2017, 48(1):1215

    Li Q Y, He Y, Xu M X, et al. Study on the removal of Ca2+ and Mg2+ in water by the geopolymer-based inorganic membrane. J Funct Mater, 2017, 48(1): 1215
    [41]
    李款, 盧都友, 李孟浩, 等. 多孔地質聚合物保溫材料研究進展. 材料導報, 2015, 29(23):58

    Li K, Lu D Y, Li M H, et al. Research progress of porous geopolymers for thermal insulation. Mater Rev, 2015, 29(23): 58
    [42]
    Davidovits J. Geopolymers: inorganic polymeric new materials. J Therm Anal, 1991, 37(8): 1633 doi: 10.1007/BF01912193
    [43]
    Nath S K, Kumar S. Influence of granulated silico-manganese slag on compressive strength and microstructure of ambient cured alkali-activated fly ash binder. Waste Biomass Valor, 2019, 10(7): 2045 doi: 10.1007/s12649-018-0213-1
    [44]
    Nath S K. Geopolymerization behavior of ferrochrome slag and fly ash blends. Constr Build Mater, 2018, 181: 487 doi: 10.1016/j.conbuildmat.2018.06.070
    [45]
    Karako? M B, Türkmen ?, Mara? M M, et al. Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater, 2014, 72: 283 doi: 10.1016/j.conbuildmat.2014.09.021
    [46]
    Komnitsas K, Zaharaki D, Bartzas G. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl Clay Sci, 2013, 73: 103 doi: 10.1016/j.clay.2012.09.018
    [47]
    Yu Q Q, Li S L, Li H, et al. Synthesis and characterization of Mn-slag based geopolymer for immobilization of Co. J Clean Prod, 2019, 234: 97 doi: 10.1016/j.jclepro.2019.06.149
    [48]
    He P Y, Zhang Y J, Chen H, et al. Development of an eco-efficient CaMoO4/electroconductive geopolymer composite for recycling silicomanganese slag and degradation of dye wastewater. J Clean Prod, 2019, 208: 1476 doi: 10.1016/j.jclepro.2018.10.176
    [49]
    Kim Y, Kim M, Sohn J, et al. Applicability of gold tailings, waste limestone, red mud, and ferronickel slag for producing glass fibers. J Clean Prod, 2018, 203: 957 doi: 10.1016/j.jclepro.2018.08.230
    [50]
    尹雪. 利用鎳鐵冶煉高溫爐渣制備超細礦物無機纖維的研究. 有色礦冶, 2013, 29(5):48 doi: 10.3969/j.issn.1007-967X.2013.05.015

    Yin X. The research on preparation of inorganic fiber by using high temperature ferronickel molten slag. Non-Ferrous Min Metall, 2013, 29(5): 48 doi: 10.3969/j.issn.1007-967X.2013.05.015
    [51]
    劉杰, 聶巧巧, 韓躍新, 等. 鎳鐵礦渣纖維對道路瀝青的改性機理. 東北大學學報: 自然科學版, 2018, 39(6):862

    Liu J, Nie Q Q, Han Y X, et al. Modified mechanism of asphalt by nickel-ferrous slag fiber. J Northeast Univ Nat Sci, 2018, 39(6): 862
    [52]
    唐洋洋. 硅錳礦熱爐渣生產礦渣棉的試驗和設計[學位論文]. 西安: 西安建筑科技大學, 2015

    Tang Y Y. The Test and Design of Heat Silicon Managanese Ore Furnace Slag Produce Mineral Wool [Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2015
    [53]
    Zhao G Z, Zhang L L, Cang D Q. Pilot trial of detoxification of chromium slag in cyclone furnace and production of slag wool fibres. J Hazard Mater, 2018, 358: 122 doi: 10.1016/j.jhazmat.2018.06.061
    [54]
    Bai Z T, Qiu G B, Yue C S, et al. Crystallization kinetics of glass-ceramics prepared from high-carbon ferrochromium slag. Ceram Int, 2016, 42(16): 19329 doi: 10.1016/j.ceramint.2016.09.102
    [55]
    Ljatifi E, Kamusheva A, Grozdanov A, et al. Optimal thermal cycle for production of glass-ceramic based on wastes from ferronickel manufacture. Ceram Int, 2015, 41(9): 11379 doi: 10.1016/j.ceramint.2015.05.098
    [56]
    Zhou K J, Zhao Q L, Zhang Y L. Crystallization properties of the glass ceramics prepared from iron-rich nickel slag. Universal J Mater Sci, 2017, 5(2): 52 doi: 10.13189/ujms.2017.050203
    [57]
    陳坤, 柯昌明, 張錦化. 硅錳渣基CaO?MgO?Al2O3?SiO2系礦渣微晶玻璃晶化性能研究. 武漢科技大學學報, 2015, 38(5):346

    Chen K, Ke C M, Zhang J H. Crystallization properties of silicomanganese slag-based CaO?MgO?Al2O3?SiO2 system glass-ceramics. J Wuhan Univ Sci Technol, 2015, 38(5): 346
    [58]
    李宇, 伊耀東, 陳奎元, 等. 冶金熔渣混合制備微晶玻璃的組成及性能優化. 工程科學學報, 2019, 41(10):1288

    Li Y, Yi Y D, Chen K Y, et al. Optimization of performance and composition for glass ceramics prepared from mixing molten slags. Chin J Eng, 2019, 41(10): 1288
    [59]
    Wang Z J, Ni W, Li K Q, et al. Crystallization characteristics of iron-rich glass ceramics prepared from nickel slag and blast furnace slag. Int J Miner Metall Mater, 2011, 18(4): 455 doi: 10.1007/s12613-011-0462-5
    [60]
    Zhang S H, Liu L B, Tan K F, et al. Influence of burning temperature and cooling methods on strength of high carbon ferrochrome slag lightweight aggregate. Constr Build Mater, 2015, 93: 1180 doi: 10.1016/j.conbuildmat.2015.04.045
    [61]
    劉輝, 廖其龍, 劉來寶, 等. 燒成制度對高碳鉻鐵合金渣多孔骨料性能的影響. 非金屬礦, 2015, 38(6):37 doi: 10.3969/j.issn.1000-8098.2015.06.011

    Liu H, Liao Q L, Liu L B, et al. Effects of calcination system on properties of lightweight aggregate produced from high carbon ferrochrome slag. Non-Metallic Mines, 2015, 38(6): 37 doi: 10.3969/j.issn.1000-8098.2015.06.011
    [62]
    Sahu N, Biswas A, Kapure G U. Development of refractory material from water quenched granulated ferrochromium slag. Miner Process Extract Metall Rev, 2016, 37(4): 255 doi: 10.1080/08827508.2016.1181630
    [63]
    Gu F Q, Peng Z W, Zhang Y B, et al. Facile route for preparing refractory materials from ferronickel slag with addition of magnesia. ACS Sustainable Chem Eng, 2018, 6(4): 4880 doi: 10.1021/acssuschemeng.7b04336
    [64]
    Tang H M, Peng Z W, Gu F Q, et al. Alumina-enhanced valorization of ferronickel slag into refractory materials under microwave irradiation. Ceram Int, 2020, 46(5): 6828 doi: 10.1016/j.ceramint.2019.11.176
    [65]
    李琦, 錢烽烽, 付啟新, 等. 鎳渣/稻殼研制輕質鎂橄欖石-尖晶石耐火材料. 非金屬礦, 2019, 42(4):41 doi: 10.3969/j.issn.1000-8098.2019.04.012

    Li Q, Qian F F, Fu Q X, et al. Research of lightweight forsterite-spinel refractory from nickel slag and rice hull. Non-Metallic Mines, 2019, 42(4): 41 doi: 10.3969/j.issn.1000-8098.2019.04.012
    [66]
    Wu Q S, Guang J M, Li S P, et al. Development of autoclaved aerated concrete from mechanically activated magnesium-rich nickel slag. J Mater Civil Eng, 2018, 30(7): 04018134 doi: 10.1061/(ASCE)MT.1943-5533.0002330
    [67]
    婁廣輝, 曹德生, 姜衛國, 等. 鎳鐵渣制備蒸壓磚工藝技術研究. 硅酸鹽通報, 2018, 37(5):1799

    Lou G H, Cao D S, Jiang W G, et al. Research of autoclaved brick technology prepared by ferronickel slag. Bull Chin Ceram Soc, 2018, 37(5): 1799
    [68]
    Gencel O, Sutcu M, Erdogmus E, et al. Properties of bricks with waste ferrochromium slag and zeolite. J Clean Prod, 2013, 59: 111 doi: 10.1016/j.jclepro.2013.06.055
    [69]
    Yildiz ?, Gül R. An investigation of utilization of ferrochrome slag in brick production. Int J Innov Res Rev, 2017, 2(1): 11
    [70]
    馮楨哲, 吳其勝, 張長森, 等. 鎳渣基泡沫玻璃的制備及其性能研究. 硅酸鹽通報, 2017, 36(5):1740

    Feng Z Z, Wu Q S, Zhang C S, et al. Preparation and properties of nickel slag based foam glass. Bull Chin Ceram Soc, 2017, 36(5): 1740
    [71]
    Ren Y H, Ren Q, Wu X L, et al. Recycling of solid wastes ferrochromium slag for preparation of eco-friendly high-strength spinel–corundum ceramics. Mater Chem Phys, 2020, 239: 122060 doi: 10.1016/j.matchemphys.2019.122060
    [72]
    Liu C B, Liu L B, Tan K F, et al. Fabrication and characterization of porous cordierite ceramics prepared from ferrochromium slag. Ceram Int, 2016, 42(1): 734 doi: 10.1016/j.ceramint.2015.08.174
    [73]
    李云濤, 鄭雙金, 毛志剛, 等. 鎳鐵渣多孔聚合微粒吸聲材料研究及應用. 噪聲與振動控制, 2018, 38(3):172 doi: 10.3969/j.issn.1006-1355.2018.03.033

    Li Y T, Zheng S J, Mao Z G, et al. Study and application of sound absorption properties of porous materials with polymerized particles prepared by waste Ni?Fe slag. Noise Vib Control, 2018, 38(3): 172 doi: 10.3969/j.issn.1006-1355.2018.03.033
    [74]
    Wang G R, Zhang J, Liu L, et al. Novel multi-metal containing MnCr catalyst made from manganese slag and chromium wastewater for effective selective catalytic reduction of nitric oxide at low temperature. J Clean Prod, 2018, 183: 917 doi: 10.1016/j.jclepro.2018.02.207
    [75]
    Wang G R, Zhang J, Zhou J Z, et al. Production of an effective catalyst with increased oxygen vacancies from manganese slag for selective catalytic reduction of nitric oxide. J Environ Manage, 2019, 239: 90 doi: 10.1016/j.jenvman.2019.03.056
    [76]
    Kryukov R E, Kozyrev N A, Prokhorenko O D, et al. Quality of weld seams produced with flux based on silicomanganese slag. Steel Transl, 2017, 47(7): 440 doi: 10.3103/S0967091217070051
    [77]
    張西玲, 郭松林, 陳林, 等. 錳渣制備沸石分子篩的表征及鈣離子交換能力的研究. 硅酸鹽通報, 2018, 37(3):1077

    Zhang X L, Guo S L, Chen L, et al. Characterization and Ca2+ exchange capacity of zeolites synthesized by manganese slag. Bull Chin Ceram Soc, 2018, 37(3): 1077
    [78]
    Miao X W, Bai Z T, Qiu G B, et al. Preparation of transparent Mn-doped CaF2 glass-ceramics from silicon-manganese slag: dependence of colour-controllable change on slag addition and crystallization behaviour. J Eur Ceram Soc, 2020, 40(8): 3249 doi: 10.1016/j.jeurceramsoc.2020.02.029
    [79]
    Patil A V, Pande A M. Behaviour of silico manganese slag manufactured aggregate as material for road and rail track construction. Adv Mater Res, 2011, 255-260: 3258 doi: 10.4028/www.scientific.net/AMR.255-260.3258
    [80]
    Huang D, Chen S H, Mon H H. The preliminary study on re-utilization of ferrous-nickel slag to replace conventional construction material for road construction (sub-grade layer improvement). Adv Mater Res, 2013, 723: 694 doi: 10.4028/www.scientific.net/AMR.723.694
    [81]
    張洪波. 利用硅錳渣研制生態滲水磚[學位論文]. 貴陽: 貴州大學, 2007

    Zhang H B. Development of Ecological Water-Permeable Bricks Using Silicon-Manganese Slag [Dissertation]. Guiyang: Guizhou University, 2007
    [82]
    程海麗, 張亮, 董瑞龍, 等. 高碳鉻鐵合金渣透水混凝土試驗研究. 再生資源與循環經濟, 2018, 11(1):30 doi: 10.3969/j.issn.1674-0912.2018.01.010

    Cheng H L, Zhang L, Dong R L, et al. Experimental research on permeable concrete with high carbon ferrochrome slag. Recyclable Resour Circular Economy, 2018, 11(1): 30 doi: 10.3969/j.issn.1674-0912.2018.01.010
    [83]
    李國昌, 王萍. 鎳鐵礦渣透水磚的制備及性能研究. 礦產綜合利用, 2018(2):97 doi: 10.3969/j.issn.1000-6532.2018.02.021

    Li G C, Wang P. Study on preparation and performances of the water permeable brick from ferronickel slag. Multipurpose Utilization Mineral Resour, 2018(2): 97 doi: 10.3969/j.issn.1000-6532.2018.02.021
    [84]
    Park J H, Kim S H, Delaune R D, et al. Enhancement of phosphorus removal with near-neutral pH utilizing steel and ferronickel slags for application of constructed wetlands. Ecol Eng, 2016, 95: 612 doi: 10.1016/j.ecoleng.2016.06.052
    [85]
    Fu P F, Yang H F, Zhang G, et al. In-situ immobilization of Cd-contaminated soils using ferronickel slag as potential soil amendment. Bull Environ Contam Toxicol, 2019, 103(5): 756 doi: 10.1007/s00128-019-02719-6
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article views (4412) PDF downloads(173) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频