Citation: | MIAO Xi-wang, BAI Zhi-tao, LU Guang-hua, LIU Lei, GUO Min, CHENG Fang-qin, ZHANG Mei. Review of comprehensive utilization of typical ferroalloy slags[J]. Chinese Journal of Engineering, 2020, 42(6): 663-679. doi: 10.13374/j.issn2095-9389.2020.03.10.003 |
[1] |
張亞洲, 李宇, 蒼大強. 鐵合金渣綜合利用的研究現狀及發展趨勢. 冶金能源, 2013, 32(5):44 doi: 10.3969/j.issn.1001-1617.2013.05.012
Zhang Y Z, Li Y, Cang D Q. Present research and tendency of comprehensive utilization of the ferroalloy-slag. Energy Metall Ind, 2013, 32(5): 44 doi: 10.3969/j.issn.1001-1617.2013.05.012
|
[2] |
宋耀欣, 蘭思東, 邸久海, 等. 中國鐵合金爐渣綜合利用現狀與發展趨勢. 中國冶金, 2017, 27(4):73
Song Y X, Lan S D, Di J H, et al. Present situation and development trend of comprehensive utilization of ferroalloy slag in China. China Metall, 2017, 27(4): 73
|
[3] |
Choi S, Kim J, Oh S, et al. Hydro-thermal reaction according to the CaO/SiO2 mole-ratio in silico-manganese slag. J Mater Cycles Waste Manage, 2017, 19(1): 374 doi: 10.1007/s10163-015-0431-6
|
[4] |
殷素紅, 馬健, 顏波, 等. 幾種不同鎳渣的特性及其用于水泥和混凝土中的可行性. 硅酸鹽通報, 2019, 38(7):2268
Yin S H, Ma J, Yan B, et al. Characteristics of several different nickel slags and their feasibility for use in cement and concrete. Bull Chin Ceram Soc, 2019, 38(7): 2268
|
[5] |
Choi Y C, Choi S. Alkali-silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions. Constr Build Mater, 2015, 99: 279 doi: 10.1016/j.conbuildmat.2015.09.039
|
[6] |
Bai Z T, Qiu G B, Peng B, et al. Synthesis and characterization of glass-ceramics prepared from high-carbon ferrochromium slag. RSC Adv, 2016, 6(58): 52715 doi: 10.1039/C6RA06245H
|
[7] |
郝旭濤. 鉻鐵渣活化制備低溫陶瓷膠凝材料[學位論文]. 昆明: 昆明理工大學, 2016
Hao X T. Preparation of Low Temperature Ceramic Cementitious Materials by Activation of Ferrochrome Slag [Dissertation]. Kunming: Kunming University of Science and Technology, 2016
|
[8] |
陸海飛, 田偉光, 徐佳林, 等. 紅土鎳礦冶煉鎳鐵廢渣綜合利用的研究進展. 材料導報, 2018, 32(增刊2): 435
Lu H F, Tian W G, Xu J L, et al. Research progress on comprehensive utilization of ferronickel slag. Mater Rev, 2018, 32(Suppl 2): 435
|
[9] |
李克慶, 馮琳, 高術杰. 鎳渣基礦井充填用膠凝材料的制備. 工程科學學報, 2015, 37(1):1
Li K Q, Feng L, Gao S J. Preparation of cementitious materials for backfilling by using nickel slag. Chin J Eng, 2015, 37(1): 1
|
[10] |
Zhang X F, Ni W, Wu J Y, et al. Hydration mechanism of a cementitious material prepared with Si?Mn slag. Int J Miner Metall Mater, 2011, 18(2): 234 doi: 10.1007/s12613-011-0428-7
|
[11] |
Nath S K, Kumar S. Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement. Constr Build Mater, 2016, 125: 127 doi: 10.1016/j.conbuildmat.2016.08.025
|
[12] |
Wu Q S, Wu Y, Tong W H, et al. Utilization of nickel slag as raw material in the production of Portland cement for road construction. Constr Build Mater, 2018, 193: 426 doi: 10.1016/j.conbuildmat.2018.10.109
|
[13] |
郝旭濤, 周新濤, 蔡發萬, 等. 鉻鐵渣基低溫陶瓷膠凝材料的性能研究. 硅酸鹽通報, 2015, 34(7):2013
Hao X T, Zhou X T, Cai F W, et al. Property of ferrochrome slag based low-temperature cementitious material. Bull Chin Ceram Soc, 2015, 34(7): 2013
|
[14] |
郝旭濤, 周新濤, 羅中秋, 等. 復合型外加劑對鉻鐵渣基復合材料性能的影響. 功能材料, 2015, 46(13):13029 doi: 10.3969/j.issn.1001-9731.2015.13.006
Hao X T, Zhou X T, Luo Z Q, et al. Effects of compound admixtures on the properties of ferrochrome slag based composite materials. J Funct Mater, 2015, 46(13): 13029 doi: 10.3969/j.issn.1001-9731.2015.13.006
|
[15] |
Frías M, de Rojas M I S, Rodríguez C. The influence of SiMn slag on chemical resistance of blended cement pastes. Constr Build Mater, 2009, 23(3): 1472 doi: 10.1016/j.conbuildmat.2008.06.012
|
[16] |
Singh G V P B, Subramaniam K V L. Production and characterization of low-energy Portland composite cement from post-industrial waste. J Clean Prod, 2019, 239: 118024 doi: 10.1016/j.jclepro.2019.118024
|
[17] |
Rahman M A, Sarker P K, Shaikh F U A, et al. Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag. Constr Build Mater, 2017, 140: 194 doi: 10.1016/j.conbuildmat.2017.02.023
|
[18] |
Katsiotis N S, Tsakiridis P E, Velissariou D, et al. Utilization of ferronickel slag as additive in Portland cement: a hydration leaching study. Waste Biomass Valor, 2015, 6(2): 177 doi: 10.1007/s12649-015-9346-7
|
[19] |
Alahrache S, Winnefeld F, Champenois J B, et al. Chemical activation of hybrid binders based on siliceous fly ash and Portland cement. Cem Concr Compos, 2016, 66: 10 doi: 10.1016/j.cemconcomp.2015.11.003
|
[20] |
Haha M B, Le Saout G, Winnefeld F, et al. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res, 2011, 41(3): 301 doi: 10.1016/j.cemconres.2010.11.016
|
[21] |
Piyapanuwat R, Asavapisit S. Performance of lime-BHA solidified plating sludge in the presence of Na2SiO3 and Na2CO3. J Environ Manage, 2011, 92(9): 2222 doi: 10.1016/j.jenvman.2011.04.004
|
[22] |
Allahverdi A, Ahmadnezhad S. Mechanical activation of silicomanganese slag and its influence on the properties of Portland slag cement. Powder Technol, 2014, 251: 41 doi: 10.1016/j.powtec.2013.10.023
|
[23] |
Kumar S, García-Tri?anes P, Teixeira-Pinto A, et al. Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag. Cem Concr Compos, 2013, 40: 7 doi: 10.1016/j.cemconcomp.2013.03.026
|
[24] |
劉梁友, 劉云, 張康, 等. 鎳鐵渣-水泥復合膠凝材料化學活化的研究. 水泥工程, 2016(2):8
Liu L Y, Liu Y, Zhang K, et al. Study on chemical activation of nickel iron slag-cement composite cementitious material. Cem Eng, 2016(2): 8
|
[25] |
Zhou X T, Hao X T, Ma Q M, et al. Effects of compound chemical activators on the hydration of low-carbon ferrochrome slag-based composite cement. J Environ Manage, 2017, 191: 58 doi: 10.1016/j.jenvman.2016.12.048
|
[26] |
Navarro R, Alcocel E G, Sánchez I, et al. Mechanical properties of alkali activated ground SiMn slag mortars with different types of aggregates. Constr Build Mater, 2018, 186: 79 doi: 10.1016/j.conbuildmat.2018.07.093
|
[27] |
Qi A, Liu X H, Wang Z W, et al. Mechanical properties of the concrete containing ferronickel slag and blast furnace slag powder. Constr Build Mater, 2020, 231: 117120 doi: 10.1016/j.conbuildmat.2019.117120
|
[28] |
Acharya P K, Patro S K. Acid resistance, sulphate resistance and strength properties of concrete containing ferrochrome ash (FA) and lime. Constr Build Mater, 2016, 120: 241 doi: 10.1016/j.conbuildmat.2016.05.099
|
[29] |
Jena S, Panigrahi R. Performance assessment of geopolymer concrete with partial replacement of ferrochrome slag as coarse aggregate. Constr Build Mater, 2019, 220: 525 doi: 10.1016/j.conbuildmat.2019.06.045
|
[30] |
Saha A K, Sarker P K. Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete: mechanical properties and leaching study. J Clean Prod, 2017, 162: 438 doi: 10.1016/j.jclepro.2017.06.035
|
[31] |
Shareef U, Cheela V R S, Raju S G. Study on physical and mechanical properties of quartzite and silico-manganese slag as alternative material for coarse aggregate. Int J Sci Res Dev, 2015, 3(09): 72
|
[32] |
呂曉昕, 田熙科, 楊超, 等. 錳渣廢棄物在硫磺混凝土生產中的應用. 中國錳業, 2010, 28(2):47 doi: 10.3969/j.issn.1002-4336.2010.02.013
Lv X X, Tian X K, Yang C, et al. Manganese residues waste on the application of sulfur concrete production. China Manganese Ind, 2010, 28(2): 47 doi: 10.3969/j.issn.1002-4336.2010.02.013
|
[33] |
Kim H, Lee C H, Ann K Y. Feasibility of ferronickel slag powder for cementitious binder in concrete mix. Constr Build Mater, 2019, 207: 693 doi: 10.1016/j.conbuildmat.2019.02.166
|
[34] |
Liu X M, Li T Y, Tian W G, et al. Study on the durability of concrete with FNS fine aggregate. J Hazard Mater, 2020, 381: 120936 doi: 10.1016/j.jhazmat.2019.120936
|
[35] |
Dash M K, Patro S K. Performance assessment of ferrochrome slag as partial replacement of fine aggregate in concrete. Eur J Environ Civil Eng, 2018: 1
|
[36] |
Karakoc M B, Türkmen ?, Mara? M M, et al. Sulfate resistance of ferrochrome slag based geopolymer concrete. Ceram Int, 2016, 42(1): 1254 doi: 10.1016/j.ceramint.2015.09.058
|
[37] |
Teing T T, Huat B B K, Shukla S K, et al. Effects of alkali-activated waste binder in soil stabilization. Int J GEOMATE, 2019, 17(59): 82
|
[38] |
廖希雯, 陳杰, 范天鳳, 等. 地質聚合物固化穩定化重金屬復合污染土壤. 環境工程學報, 2018, 12(7):2056 doi: 10.12030/j.cjee.201712077
Liao X W, Chen J, Fan T F, et al. Soil of heavy metal composite pollution by geological polymer stabilization. Chin J Environ Eng, 2018, 12(7): 2056 doi: 10.12030/j.cjee.201712077
|
[39] |
Yan C J, Guo L, Ren D M, et al. Novel composites based on geopolymer for removal of Pb (II). Mater Lett, 2019, 239: 192 doi: 10.1016/j.matlet.2018.12.105
|
[40] |
李巧云, 賀艷, 徐夢雪, 等. 地質聚合物基無機膜去除水中鈣、鎂離子的研究. 功能材料, 2017, 48(1):1215
Li Q Y, He Y, Xu M X, et al. Study on the removal of Ca2+ and Mg2+ in water by the geopolymer-based inorganic membrane. J Funct Mater, 2017, 48(1): 1215
|
[41] |
李款, 盧都友, 李孟浩, 等. 多孔地質聚合物保溫材料研究進展. 材料導報, 2015, 29(23):58
Li K, Lu D Y, Li M H, et al. Research progress of porous geopolymers for thermal insulation. Mater Rev, 2015, 29(23): 58
|
[42] |
Davidovits J. Geopolymers: inorganic polymeric new materials. J Therm Anal, 1991, 37(8): 1633 doi: 10.1007/BF01912193
|
[43] |
Nath S K, Kumar S. Influence of granulated silico-manganese slag on compressive strength and microstructure of ambient cured alkali-activated fly ash binder. Waste Biomass Valor, 2019, 10(7): 2045 doi: 10.1007/s12649-018-0213-1
|
[44] |
Nath S K. Geopolymerization behavior of ferrochrome slag and fly ash blends. Constr Build Mater, 2018, 181: 487 doi: 10.1016/j.conbuildmat.2018.06.070
|
[45] |
Karako? M B, Türkmen ?, Mara? M M, et al. Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater, 2014, 72: 283 doi: 10.1016/j.conbuildmat.2014.09.021
|
[46] |
Komnitsas K, Zaharaki D, Bartzas G. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl Clay Sci, 2013, 73: 103 doi: 10.1016/j.clay.2012.09.018
|
[47] |
Yu Q Q, Li S L, Li H, et al. Synthesis and characterization of Mn-slag based geopolymer for immobilization of Co. J Clean Prod, 2019, 234: 97 doi: 10.1016/j.jclepro.2019.06.149
|
[48] |
He P Y, Zhang Y J, Chen H, et al. Development of an eco-efficient CaMoO4/electroconductive geopolymer composite for recycling silicomanganese slag and degradation of dye wastewater. J Clean Prod, 2019, 208: 1476 doi: 10.1016/j.jclepro.2018.10.176
|
[49] |
Kim Y, Kim M, Sohn J, et al. Applicability of gold tailings, waste limestone, red mud, and ferronickel slag for producing glass fibers. J Clean Prod, 2018, 203: 957 doi: 10.1016/j.jclepro.2018.08.230
|
[50] |
尹雪. 利用鎳鐵冶煉高溫爐渣制備超細礦物無機纖維的研究. 有色礦冶, 2013, 29(5):48 doi: 10.3969/j.issn.1007-967X.2013.05.015
Yin X. The research on preparation of inorganic fiber by using high temperature ferronickel molten slag. Non-Ferrous Min Metall, 2013, 29(5): 48 doi: 10.3969/j.issn.1007-967X.2013.05.015
|
[51] |
劉杰, 聶巧巧, 韓躍新, 等. 鎳鐵礦渣纖維對道路瀝青的改性機理. 東北大學學報: 自然科學版, 2018, 39(6):862
Liu J, Nie Q Q, Han Y X, et al. Modified mechanism of asphalt by nickel-ferrous slag fiber. J Northeast Univ Nat Sci, 2018, 39(6): 862
|
[52] |
唐洋洋. 硅錳礦熱爐渣生產礦渣棉的試驗和設計[學位論文]. 西安: 西安建筑科技大學, 2015
Tang Y Y. The Test and Design of Heat Silicon Managanese Ore Furnace Slag Produce Mineral Wool [Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2015
|
[53] |
Zhao G Z, Zhang L L, Cang D Q. Pilot trial of detoxification of chromium slag in cyclone furnace and production of slag wool fibres. J Hazard Mater, 2018, 358: 122 doi: 10.1016/j.jhazmat.2018.06.061
|
[54] |
Bai Z T, Qiu G B, Yue C S, et al. Crystallization kinetics of glass-ceramics prepared from high-carbon ferrochromium slag. Ceram Int, 2016, 42(16): 19329 doi: 10.1016/j.ceramint.2016.09.102
|
[55] |
Ljatifi E, Kamusheva A, Grozdanov A, et al. Optimal thermal cycle for production of glass-ceramic based on wastes from ferronickel manufacture. Ceram Int, 2015, 41(9): 11379 doi: 10.1016/j.ceramint.2015.05.098
|
[56] |
Zhou K J, Zhao Q L, Zhang Y L. Crystallization properties of the glass ceramics prepared from iron-rich nickel slag. Universal J Mater Sci, 2017, 5(2): 52 doi: 10.13189/ujms.2017.050203
|
[57] |
陳坤, 柯昌明, 張錦化. 硅錳渣基CaO?MgO?Al2O3?SiO2系礦渣微晶玻璃晶化性能研究. 武漢科技大學學報, 2015, 38(5):346
Chen K, Ke C M, Zhang J H. Crystallization properties of silicomanganese slag-based CaO?MgO?Al2O3?SiO2 system glass-ceramics. J Wuhan Univ Sci Technol, 2015, 38(5): 346
|
[58] |
李宇, 伊耀東, 陳奎元, 等. 冶金熔渣混合制備微晶玻璃的組成及性能優化. 工程科學學報, 2019, 41(10):1288
Li Y, Yi Y D, Chen K Y, et al. Optimization of performance and composition for glass ceramics prepared from mixing molten slags. Chin J Eng, 2019, 41(10): 1288
|
[59] |
Wang Z J, Ni W, Li K Q, et al. Crystallization characteristics of iron-rich glass ceramics prepared from nickel slag and blast furnace slag. Int J Miner Metall Mater, 2011, 18(4): 455 doi: 10.1007/s12613-011-0462-5
|
[60] |
Zhang S H, Liu L B, Tan K F, et al. Influence of burning temperature and cooling methods on strength of high carbon ferrochrome slag lightweight aggregate. Constr Build Mater, 2015, 93: 1180 doi: 10.1016/j.conbuildmat.2015.04.045
|
[61] |
劉輝, 廖其龍, 劉來寶, 等. 燒成制度對高碳鉻鐵合金渣多孔骨料性能的影響. 非金屬礦, 2015, 38(6):37 doi: 10.3969/j.issn.1000-8098.2015.06.011
Liu H, Liao Q L, Liu L B, et al. Effects of calcination system on properties of lightweight aggregate produced from high carbon ferrochrome slag. Non-Metallic Mines, 2015, 38(6): 37 doi: 10.3969/j.issn.1000-8098.2015.06.011
|
[62] |
Sahu N, Biswas A, Kapure G U. Development of refractory material from water quenched granulated ferrochromium slag. Miner Process Extract Metall Rev, 2016, 37(4): 255 doi: 10.1080/08827508.2016.1181630
|
[63] |
Gu F Q, Peng Z W, Zhang Y B, et al. Facile route for preparing refractory materials from ferronickel slag with addition of magnesia. ACS Sustainable Chem Eng, 2018, 6(4): 4880 doi: 10.1021/acssuschemeng.7b04336
|
[64] |
Tang H M, Peng Z W, Gu F Q, et al. Alumina-enhanced valorization of ferronickel slag into refractory materials under microwave irradiation. Ceram Int, 2020, 46(5): 6828 doi: 10.1016/j.ceramint.2019.11.176
|
[65] |
李琦, 錢烽烽, 付啟新, 等. 鎳渣/稻殼研制輕質鎂橄欖石-尖晶石耐火材料. 非金屬礦, 2019, 42(4):41 doi: 10.3969/j.issn.1000-8098.2019.04.012
Li Q, Qian F F, Fu Q X, et al. Research of lightweight forsterite-spinel refractory from nickel slag and rice hull. Non-Metallic Mines, 2019, 42(4): 41 doi: 10.3969/j.issn.1000-8098.2019.04.012
|
[66] |
Wu Q S, Guang J M, Li S P, et al. Development of autoclaved aerated concrete from mechanically activated magnesium-rich nickel slag. J Mater Civil Eng, 2018, 30(7): 04018134 doi: 10.1061/(ASCE)MT.1943-5533.0002330
|
[67] |
婁廣輝, 曹德生, 姜衛國, 等. 鎳鐵渣制備蒸壓磚工藝技術研究. 硅酸鹽通報, 2018, 37(5):1799
Lou G H, Cao D S, Jiang W G, et al. Research of autoclaved brick technology prepared by ferronickel slag. Bull Chin Ceram Soc, 2018, 37(5): 1799
|
[68] |
Gencel O, Sutcu M, Erdogmus E, et al. Properties of bricks with waste ferrochromium slag and zeolite. J Clean Prod, 2013, 59: 111 doi: 10.1016/j.jclepro.2013.06.055
|
[69] |
Yildiz ?, Gül R. An investigation of utilization of ferrochrome slag in brick production. Int J Innov Res Rev, 2017, 2(1): 11
|
[70] |
馮楨哲, 吳其勝, 張長森, 等. 鎳渣基泡沫玻璃的制備及其性能研究. 硅酸鹽通報, 2017, 36(5):1740
Feng Z Z, Wu Q S, Zhang C S, et al. Preparation and properties of nickel slag based foam glass. Bull Chin Ceram Soc, 2017, 36(5): 1740
|
[71] |
Ren Y H, Ren Q, Wu X L, et al. Recycling of solid wastes ferrochromium slag for preparation of eco-friendly high-strength spinel–corundum ceramics. Mater Chem Phys, 2020, 239: 122060 doi: 10.1016/j.matchemphys.2019.122060
|
[72] |
Liu C B, Liu L B, Tan K F, et al. Fabrication and characterization of porous cordierite ceramics prepared from ferrochromium slag. Ceram Int, 2016, 42(1): 734 doi: 10.1016/j.ceramint.2015.08.174
|
[73] |
李云濤, 鄭雙金, 毛志剛, 等. 鎳鐵渣多孔聚合微粒吸聲材料研究及應用. 噪聲與振動控制, 2018, 38(3):172 doi: 10.3969/j.issn.1006-1355.2018.03.033
Li Y T, Zheng S J, Mao Z G, et al. Study and application of sound absorption properties of porous materials with polymerized particles prepared by waste Ni?Fe slag. Noise Vib Control, 2018, 38(3): 172 doi: 10.3969/j.issn.1006-1355.2018.03.033
|
[74] |
Wang G R, Zhang J, Liu L, et al. Novel multi-metal containing MnCr catalyst made from manganese slag and chromium wastewater for effective selective catalytic reduction of nitric oxide at low temperature. J Clean Prod, 2018, 183: 917 doi: 10.1016/j.jclepro.2018.02.207
|
[75] |
Wang G R, Zhang J, Zhou J Z, et al. Production of an effective catalyst with increased oxygen vacancies from manganese slag for selective catalytic reduction of nitric oxide. J Environ Manage, 2019, 239: 90 doi: 10.1016/j.jenvman.2019.03.056
|
[76] |
Kryukov R E, Kozyrev N A, Prokhorenko O D, et al. Quality of weld seams produced with flux based on silicomanganese slag. Steel Transl, 2017, 47(7): 440 doi: 10.3103/S0967091217070051
|
[77] |
張西玲, 郭松林, 陳林, 等. 錳渣制備沸石分子篩的表征及鈣離子交換能力的研究. 硅酸鹽通報, 2018, 37(3):1077
Zhang X L, Guo S L, Chen L, et al. Characterization and Ca2+ exchange capacity of zeolites synthesized by manganese slag. Bull Chin Ceram Soc, 2018, 37(3): 1077
|
[78] |
Miao X W, Bai Z T, Qiu G B, et al. Preparation of transparent Mn-doped CaF2 glass-ceramics from silicon-manganese slag: dependence of colour-controllable change on slag addition and crystallization behaviour. J Eur Ceram Soc, 2020, 40(8): 3249 doi: 10.1016/j.jeurceramsoc.2020.02.029
|
[79] |
Patil A V, Pande A M. Behaviour of silico manganese slag manufactured aggregate as material for road and rail track construction. Adv Mater Res, 2011, 255-260: 3258 doi: 10.4028/www.scientific.net/AMR.255-260.3258
|
[80] |
Huang D, Chen S H, Mon H H. The preliminary study on re-utilization of ferrous-nickel slag to replace conventional construction material for road construction (sub-grade layer improvement). Adv Mater Res, 2013, 723: 694 doi: 10.4028/www.scientific.net/AMR.723.694
|
[81] |
張洪波. 利用硅錳渣研制生態滲水磚[學位論文]. 貴陽: 貴州大學, 2007
Zhang H B. Development of Ecological Water-Permeable Bricks Using Silicon-Manganese Slag [Dissertation]. Guiyang: Guizhou University, 2007
|
[82] |
程海麗, 張亮, 董瑞龍, 等. 高碳鉻鐵合金渣透水混凝土試驗研究. 再生資源與循環經濟, 2018, 11(1):30 doi: 10.3969/j.issn.1674-0912.2018.01.010
Cheng H L, Zhang L, Dong R L, et al. Experimental research on permeable concrete with high carbon ferrochrome slag. Recyclable Resour Circular Economy, 2018, 11(1): 30 doi: 10.3969/j.issn.1674-0912.2018.01.010
|
[83] |
李國昌, 王萍. 鎳鐵礦渣透水磚的制備及性能研究. 礦產綜合利用, 2018(2):97 doi: 10.3969/j.issn.1000-6532.2018.02.021
Li G C, Wang P. Study on preparation and performances of the water permeable brick from ferronickel slag. Multipurpose Utilization Mineral Resour, 2018(2): 97 doi: 10.3969/j.issn.1000-6532.2018.02.021
|
[84] |
Park J H, Kim S H, Delaune R D, et al. Enhancement of phosphorus removal with near-neutral pH utilizing steel and ferronickel slags for application of constructed wetlands. Ecol Eng, 2016, 95: 612 doi: 10.1016/j.ecoleng.2016.06.052
|
[85] |
Fu P F, Yang H F, Zhang G, et al. In-situ immobilization of Cd-contaminated soils using ferronickel slag as potential soil amendment. Bull Environ Contam Toxicol, 2019, 103(5): 756 doi: 10.1007/s00128-019-02719-6
|