Citation: | JU Jian-tao, YANG Kang-shuai, JI Guang-heng, AN Jia-liang, LIU Shi-wei. Thermodynamic study on design of electroslag remelting slag for Incoloy 825 Alloy[J]. Chinese Journal of Engineering, 2020, 42(S): 119-127. doi: 10.13374/j.issn2095-9389.2020.03.07.s01 |
[1] |
李星, 耿鑫, 姜周華, 等. 電渣重熔高溫合金渣系對冶金質量的影響. 鋼鐵, 2015, 50(9):41
Li X, Geng X, Jiang Z H, et al. Influences of slag system on metallurgical quality for high temperature alloy by electroslag remelting. Iron Steel, 2015, 50(9): 41
|
[2] |
段生朝, 郭漢杰, 石驍, 等. Inconel 718高溫合金電渣重熔熱力學分析. 工程科學學報, 2018, 40(增刊1): 53
Duan S C, Guo H J, Shi X, et al. Thermodynamic analysis of the smelting of Inconel 718 superalloy during electroslag remelting process. Chin J Eng, 2018, 40(Suppl 1): 53
|
[3] |
Hou D, Jiang Z H, Dong Y W, et al. Thermodynamic design of electroslag remelting slag for high titanium and low aluminium stainless steel based on IMCT. Ironmaking Steelmaking, 2016, 43(7): 517 doi: 10.1080/03019233.2015.1110920
|
[4] |
Hou D, Jiang Z H, Qu T P, et al. Aluminum, titanium and oxygen control during electroslag remelting of stainless steel based on thermodynamic analysis. J Iron Steel Res Int, 2019, 26(1): 20 doi: 10.1007/s42243-018-0107-2
|
[5] |
侯棟, 董艷伍, 姜周華, 等. 含鋁鈦合金電渣重熔中的渣系設計及脫氧熱力學. 東北大學學報:自然科學版, 2015, 36(11):1591
Hou D, Dong Y W, Jiang Z H, et al. Deoxidation thermodynamics and slag designing in ESR process for aluminum-titannium alloy. J Northeast Univ Nat Sci, 2015, 36(11): 1591
|
[6] |
Duan S C, Shi X, Mao M T, et al. Investigation of the oxidation behaviour of Ti and Al in Inconel 718 superalloy during electroslag remelting. Sci Rep, 2018, 8: 5232 doi: 10.1038/s41598-018-23556-3
|
[7] |
孫楠, 溫宸, 劉子利, 等. Al、Ti含量對鍛態Incoloy825合金組織和耐腐蝕性能的影響. 稀有金屬材料與工程, 2018, 47(3):860
Sun N, Wen C, Liu Z L, et al. Effect of Al, Ti contents on the microstructure and corrosion resistance of as-forged Incoloy825 alloy. Rare Met Mater Eng, 2018, 47(3): 860
|
[8] |
陳崇禧, 王涌, 傅杰, 等. 高鈦低鋁高溫合金電渣重熔中鈦燒損的研究. 金屬學報, 1981, 17(1):50
Chen C X, Wang Y, Fu J, et al. A study on the titanium loss during electroslag remelting high titanium and low aluminum content superally. Acta Metall Sinica, 1981, 17(1): 50
|
[9] |
粟碩. R-26合金電渣重熔Ti含量控制研究. 鋼鐵研究學報, 2011, 23(增刊2): 282
Su S. Research on control of Ti content in electroslag remelting of R-26. J Iron Steel Res, 2011, 23(Suppl 2): 282
|
[10] |
Yang J G, Park J H. Distribution behavior of aluminum and titanium between nickel-based alloys and molten slags in the electroslag remelting (ESR) process. Metall Mater Trans B, 2017, 48(4): 2147 doi: 10.1007/s11663-017-0994-9
|
[11] |
王海江, 徐朋, 楊松. 氬氣流量、渣系和加Al粉對1Cr21Ni5Ti鋼保護氣氛重熔錠[Ti]的影響. 特殊鋼, 2015, 36(6):23 doi: 10.3969/j.issn.1003-8620.2015.06.007
Wang H J, Xu P, Yang S. Effect of argon flow rate, slag series and adding aluminium on[Ti] of shielding atmosphere ESR ingot of steel 1Cr21Ni5Ti. Special Steel, 2015, 36(6): 23 doi: 10.3969/j.issn.1003-8620.2015.06.007
|
[12] |
尹彬, 李萬明, 吳少鵬, 等. Inconel718高溫合金電渣重熔鋁鈦元素燒損熱力學分析. 鋼鐵, 2019, 54(5):86
Yin B, Li W M, Wu S P, et al. Thermodynamic analysis of Al and Ti element loss in electroslag remelting Inconel 718 superalloy. Iron Steel, 2019, 54(5): 86
|
[13] |
Li S J, Cheng G G, Yang L, et al. A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process: description and verification. ISIJ Int, 2017, 57(4): 713 doi: 10.2355/isijinternational.ISIJINT-2016-655
|
[14] |
Duan S C, Shi X, Wang F, et al. A review of methodology development for controlling loss of alloying elements during the electroslag remelting process. Metall Mater Trans B, 2019, 50(6): 3055 doi: 10.1007/s11663-019-01665-2
|
[15] |
Hou D, Liu F B, Qu T P, et al. Behavior of alloying elements during drawing-ingot-type electroslag remelting of stainless steel containing titanium. ISIJ Int, 2018, 58(5): 876 doi: 10.2355/isijinternational.ISIJINT-2017-687
|
[16] |
姜開友, 秦文華, 王超洋. 電渣重熔車間工作場所職業病危害因素檢測分析. 中國工業醫學雜志, 2018, 31(3):220
Jiang K Y, Qin W H, Wang C Y. Analysis on detection result of occupational hazards in workplaces of electroslag remelting workshop. Chin J Ind Med, 2018, 31(3): 220
|
[17] |
巨建濤, 呂振林, 焦志遠, 等. CaF2?SiO2?CaO渣系的非等溫揮發行為. 過程工程學報, 2012, 12(4):618
Ju J T, Lv Z L, Jiao Z Y, et al. Non-isothermal analysis on the evaporation behavior of CaF2?SiO2?CaO system slag. Chin J Process Eng, 2012, 12(4): 618
|
[18] |
Zhao J X, Chen Y M, Li X M, et al. Mechanism of slag composition change during electroslag remelting process. J Iron Steel Res Int, 2011, 18(10): 24 doi: 10.1016/S1006-706X(12)60017-X
|
[19] |
趙俊學, 盧亮, 趙忠宇, 等. 電渣重熔用五元高氟渣高溫揮發機制. 鋼鐵, 2019, 54(6):43
Zhao J X, Lu L, Zhao Z Y, et al. Volatilization mechanism of ESR slag with high fluoride under high-temperature. Iron Steel, 2019, 54(6): 43
|
[20] |
茅洪祥, 李正邦. 低氟渣及無氟渣電渣重熔研究. 鋼鐵研究總院學報, 1983, 3(4):597
Mao H X, Li Z B. A metallurgical study on low fluorine and fluorine-free slag for electroslag remelting. J Iron Steel Res, 1983, 3(4): 597
|
[21] |
Shi C B, Shin S H, Zheng D L, et al. Development of low-fluoride slag for electroslag remelting: role of Li2O on the viscosity and structure of the slag. Metall Mater Trans B, 2016, 47(6): 3343 doi: 10.1007/s11663-016-0826-3
|
[22] |
Pateisky G, Biele H, Fleischer H J. The reactions of titanium and silicon with Al2O3?CaO?CaF2 slags in the ESR Process. J Vac Sci Technol, 1972, 9(6): 1318 doi: 10.1116/1.1317029
|
[23] |
Karasev A V, Suito H. Analysis of size distributions of primary oxide inclusions in Fe-10 mass Pct Ni-M(M=Si, Ti, Al, Zr, and Ce) alloy. Metall Mater Trans B, 1999, 30(2): 259 doi: 10.1007/s11663-999-0055-0
|
[24] |
Pak J J, Jeong Y S, Tae S J, et al. Thermodynamics of titanium and nitrogen in an Fe?Ni melt. Metall Mater Trans B, 2005, 36(4): 489 doi: 10.1007/s11663-005-0040-1
|
[25] |
Jiang Z H, Hou D, Dong Y W, et al. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B, 2016, 47(2): 1465 doi: 10.1007/s11663-015-0530-8
|
[26] |
Zheng D L, Li J, Shi C B, et al. Crystallization characteristics and in-mold performance of electroslag remelting-type TiO2-bearing slag. Metall Mater Trans B, 2019, 50(3): 1148 doi: 10.1007/s11663-019-01536-w
|
[27] |
Shi C B, Zheng D L, Shin S H, et al. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels. Int J Miner Metall Mater, 2017, 24(1): 18 doi: 10.1007/s12613-017-1374-9
|
[28] |
陳艷梅, 趙俊學, 樊君, 等. 電渣重熔過程中渣成分變化的研究. 特殊鋼, 2010, 31(6):7 doi: 10.3969/j.issn.1003-8620.2010.06.003
Chen Y M, Zhao J X, Fan J, et al. A study on variations of slag ingredient during electroslag remelting process. Special Steel, 2010, 31(6): 7 doi: 10.3969/j.issn.1003-8620.2010.06.003
|