<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue S
Dec.  2020
Turn off MathJax
Article Contents
JU Jian-tao, YANG Kang-shuai, JI Guang-heng, AN Jia-liang, LIU Shi-wei. Thermodynamic study on design of electroslag remelting slag for Incoloy 825 Alloy[J]. Chinese Journal of Engineering, 2020, 42(S): 119-127. doi: 10.13374/j.issn2095-9389.2020.03.07.s01
Citation: JU Jian-tao, YANG Kang-shuai, JI Guang-heng, AN Jia-liang, LIU Shi-wei. Thermodynamic study on design of electroslag remelting slag for Incoloy 825 Alloy[J]. Chinese Journal of Engineering, 2020, 42(S): 119-127. doi: 10.13374/j.issn2095-9389.2020.03.07.s01

Thermodynamic study on design of electroslag remelting slag for Incoloy 825 Alloy

doi: 10.13374/j.issn2095-9389.2020.03.07.s01
More Information
  • Corresponding author: E-mail: ju_jiantao@163.com
  • Received Date: 2020-03-07
  • Publish Date: 2020-12-25
  • Incoloy825 alloy is extensively used in the aerospace and petrochemical industries owing to its excellent corrosion resistance and mechanical properties. It is a solid solution-strengthened Fe?Cr?Ni-based corrosion-resistant alloy. The changes in the Al and Ti contents of the alloy determine the precipitation temperature of the strengthening phases γ '(Ni3AlTi) and Ti (C, N) in the alloy. At present, the main production methods of Incoloy825 alloy are vacuum melting and electroslag remelting. However, owing to the reaction of the components in the slag with the Al and Ti elements in the alloy during the electroslag remelting process, the axial component distribution of the Al and Ti elements in the electroslag ingot is not homogeneous, which seriously affects the quality of the electroslag ingot. It is necessary to control the Al and Ti contents in Incoloy825 alloy and reduce the volatilization of fluoride during the electroslag remelting process. The thermodynamic model of slag metal reaction was established using FactSage thermodynamic software. A low-fluorine slag system suitable for controlling Al and Ti contents was designed, and the relationship between the components in the slag and the activity ratios of Al2O3 and TiO2 was studied, the result was verified by a high-temperature slag metal equilibrium experiment. The results show that the CaO and Al2O3 contents in slag increases with increase in the $\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$ value, while the Ti content in the alloy decreases with increasing Al content. Moreover, as the TiO2 content in the slag increases, the $\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$ value decreases, Ti content increases and Al content decreases. The CaF2 and MgO contents in the slag increase have a little effect with the $\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$value. When the difference between the Al and Ti contents in the alloy is large, the elemental Ti in the alloy is easy to be oxidized; when difference between the Al and Ti contents is small, the elemental Al is easy to be oxidized. When the mass percent of CaO and Al2O3 in the slag are 30%?33% respectively, the mass percent of TiO2 is 6%?12%, the mass percent of CaF2 is 20%?30%, the mass percent of MgO is 1%?5%, the Al and Ti contents in the alloy can be controlled.

     

  • loading
  • [1]
    李星, 耿鑫, 姜周華, 等. 電渣重熔高溫合金渣系對冶金質量的影響. 鋼鐵, 2015, 50(9):41

    Li X, Geng X, Jiang Z H, et al. Influences of slag system on metallurgical quality for high temperature alloy by electroslag remelting. Iron Steel, 2015, 50(9): 41
    [2]
    段生朝, 郭漢杰, 石驍, 等. Inconel 718高溫合金電渣重熔熱力學分析. 工程科學學報, 2018, 40(增刊1): 53

    Duan S C, Guo H J, Shi X, et al. Thermodynamic analysis of the smelting of Inconel 718 superalloy during electroslag remelting process. Chin J Eng, 2018, 40(Suppl 1): 53
    [3]
    Hou D, Jiang Z H, Dong Y W, et al. Thermodynamic design of electroslag remelting slag for high titanium and low aluminium stainless steel based on IMCT. Ironmaking Steelmaking, 2016, 43(7): 517 doi: 10.1080/03019233.2015.1110920
    [4]
    Hou D, Jiang Z H, Qu T P, et al. Aluminum, titanium and oxygen control during electroslag remelting of stainless steel based on thermodynamic analysis. J Iron Steel Res Int, 2019, 26(1): 20 doi: 10.1007/s42243-018-0107-2
    [5]
    侯棟, 董艷伍, 姜周華, 等. 含鋁鈦合金電渣重熔中的渣系設計及脫氧熱力學. 東北大學學報:自然科學版, 2015, 36(11):1591

    Hou D, Dong Y W, Jiang Z H, et al. Deoxidation thermodynamics and slag designing in ESR process for aluminum-titannium alloy. J Northeast Univ Nat Sci, 2015, 36(11): 1591
    [6]
    Duan S C, Shi X, Mao M T, et al. Investigation of the oxidation behaviour of Ti and Al in Inconel 718 superalloy during electroslag remelting. Sci Rep, 2018, 8: 5232 doi: 10.1038/s41598-018-23556-3
    [7]
    孫楠, 溫宸, 劉子利, 等. Al、Ti含量對鍛態Incoloy825合金組織和耐腐蝕性能的影響. 稀有金屬材料與工程, 2018, 47(3):860

    Sun N, Wen C, Liu Z L, et al. Effect of Al, Ti contents on the microstructure and corrosion resistance of as-forged Incoloy825 alloy. Rare Met Mater Eng, 2018, 47(3): 860
    [8]
    陳崇禧, 王涌, 傅杰, 等. 高鈦低鋁高溫合金電渣重熔中鈦燒損的研究. 金屬學報, 1981, 17(1):50

    Chen C X, Wang Y, Fu J, et al. A study on the titanium loss during electroslag remelting high titanium and low aluminum content superally. Acta Metall Sinica, 1981, 17(1): 50
    [9]
    粟碩. R-26合金電渣重熔Ti含量控制研究. 鋼鐵研究學報, 2011, 23(增刊2): 282

    Su S. Research on control of Ti content in electroslag remelting of R-26. J Iron Steel Res, 2011, 23(Suppl 2): 282
    [10]
    Yang J G, Park J H. Distribution behavior of aluminum and titanium between nickel-based alloys and molten slags in the electroslag remelting (ESR) process. Metall Mater Trans B, 2017, 48(4): 2147 doi: 10.1007/s11663-017-0994-9
    [11]
    王海江, 徐朋, 楊松. 氬氣流量、渣系和加Al粉對1Cr21Ni5Ti鋼保護氣氛重熔錠[Ti]的影響. 特殊鋼, 2015, 36(6):23 doi: 10.3969/j.issn.1003-8620.2015.06.007

    Wang H J, Xu P, Yang S. Effect of argon flow rate, slag series and adding aluminium on[Ti] of shielding atmosphere ESR ingot of steel 1Cr21Ni5Ti. Special Steel, 2015, 36(6): 23 doi: 10.3969/j.issn.1003-8620.2015.06.007
    [12]
    尹彬, 李萬明, 吳少鵬, 等. Inconel718高溫合金電渣重熔鋁鈦元素燒損熱力學分析. 鋼鐵, 2019, 54(5):86

    Yin B, Li W M, Wu S P, et al. Thermodynamic analysis of Al and Ti element loss in electroslag remelting Inconel 718 superalloy. Iron Steel, 2019, 54(5): 86
    [13]
    Li S J, Cheng G G, Yang L, et al. A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process: description and verification. ISIJ Int, 2017, 57(4): 713 doi: 10.2355/isijinternational.ISIJINT-2016-655
    [14]
    Duan S C, Shi X, Wang F, et al. A review of methodology development for controlling loss of alloying elements during the electroslag remelting process. Metall Mater Trans B, 2019, 50(6): 3055 doi: 10.1007/s11663-019-01665-2
    [15]
    Hou D, Liu F B, Qu T P, et al. Behavior of alloying elements during drawing-ingot-type electroslag remelting of stainless steel containing titanium. ISIJ Int, 2018, 58(5): 876 doi: 10.2355/isijinternational.ISIJINT-2017-687
    [16]
    姜開友, 秦文華, 王超洋. 電渣重熔車間工作場所職業病危害因素檢測分析. 中國工業醫學雜志, 2018, 31(3):220

    Jiang K Y, Qin W H, Wang C Y. Analysis on detection result of occupational hazards in workplaces of electroslag remelting workshop. Chin J Ind Med, 2018, 31(3): 220
    [17]
    巨建濤, 呂振林, 焦志遠, 等. CaF2?SiO2?CaO渣系的非等溫揮發行為. 過程工程學報, 2012, 12(4):618

    Ju J T, Lv Z L, Jiao Z Y, et al. Non-isothermal analysis on the evaporation behavior of CaF2?SiO2?CaO system slag. Chin J Process Eng, 2012, 12(4): 618
    [18]
    Zhao J X, Chen Y M, Li X M, et al. Mechanism of slag composition change during electroslag remelting process. J Iron Steel Res Int, 2011, 18(10): 24 doi: 10.1016/S1006-706X(12)60017-X
    [19]
    趙俊學, 盧亮, 趙忠宇, 等. 電渣重熔用五元高氟渣高溫揮發機制. 鋼鐵, 2019, 54(6):43

    Zhao J X, Lu L, Zhao Z Y, et al. Volatilization mechanism of ESR slag with high fluoride under high-temperature. Iron Steel, 2019, 54(6): 43
    [20]
    茅洪祥, 李正邦. 低氟渣及無氟渣電渣重熔研究. 鋼鐵研究總院學報, 1983, 3(4):597

    Mao H X, Li Z B. A metallurgical study on low fluorine and fluorine-free slag for electroslag remelting. J Iron Steel Res, 1983, 3(4): 597
    [21]
    Shi C B, Shin S H, Zheng D L, et al. Development of low-fluoride slag for electroslag remelting: role of Li2O on the viscosity and structure of the slag. Metall Mater Trans B, 2016, 47(6): 3343 doi: 10.1007/s11663-016-0826-3
    [22]
    Pateisky G, Biele H, Fleischer H J. The reactions of titanium and silicon with Al2O3?CaO?CaF2 slags in the ESR Process. J Vac Sci Technol, 1972, 9(6): 1318 doi: 10.1116/1.1317029
    [23]
    Karasev A V, Suito H. Analysis of size distributions of primary oxide inclusions in Fe-10 mass Pct Ni-M(M=Si, Ti, Al, Zr, and Ce) alloy. Metall Mater Trans B, 1999, 30(2): 259 doi: 10.1007/s11663-999-0055-0
    [24]
    Pak J J, Jeong Y S, Tae S J, et al. Thermodynamics of titanium and nitrogen in an Fe?Ni melt. Metall Mater Trans B, 2005, 36(4): 489 doi: 10.1007/s11663-005-0040-1
    [25]
    Jiang Z H, Hou D, Dong Y W, et al. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B, 2016, 47(2): 1465 doi: 10.1007/s11663-015-0530-8
    [26]
    Zheng D L, Li J, Shi C B, et al. Crystallization characteristics and in-mold performance of electroslag remelting-type TiO2-bearing slag. Metall Mater Trans B, 2019, 50(3): 1148 doi: 10.1007/s11663-019-01536-w
    [27]
    Shi C B, Zheng D L, Shin S H, et al. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels. Int J Miner Metall Mater, 2017, 24(1): 18 doi: 10.1007/s12613-017-1374-9
    [28]
    陳艷梅, 趙俊學, 樊君, 等. 電渣重熔過程中渣成分變化的研究. 特殊鋼, 2010, 31(6):7 doi: 10.3969/j.issn.1003-8620.2010.06.003

    Chen Y M, Zhao J X, Fan J, et al. A study on variations of slag ingredient during electroslag remelting process. Special Steel, 2010, 31(6): 7 doi: 10.3969/j.issn.1003-8620.2010.06.003
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views (1009) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频