<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 4
Mar.  2021
Turn off MathJax
Article Contents
HE Xiao-fei, HU Cheng-fei, XU Le, WANG Mao-qiu. Effect of total oxygen on the nonmetallic inclusion of gear steel[J]. Chinese Journal of Engineering, 2021, 43(4): 537-544. doi: 10.13374/j.issn2095-9389.2020.03.05.001
Citation: HE Xiao-fei, HU Cheng-fei, XU Le, WANG Mao-qiu. Effect of total oxygen on the nonmetallic inclusion of gear steel[J]. Chinese Journal of Engineering, 2021, 43(4): 537-544. doi: 10.13374/j.issn2095-9389.2020.03.05.001

Effect of total oxygen on the nonmetallic inclusion of gear steel

doi: 10.13374/j.issn2095-9389.2020.03.05.001
More Information
  • Corresponding author: E-mail: xiaofei6423@126.com
  • Received Date: 2020-03-05
  • Publish Date: 2021-04-26
  • It is an important symbol of the metallurgical quality level of special steel for inclusion controlling, which can improve the service performance of special steel to a greater extent. As a typical steel grade, gear steel, in the special steel field, is also required strictly in controlling of inclusions. It is known that total oxygen content can reflect the level of inclusions to some extent. Since the 1980s, ultralow oxygen has become a direction for the development of special steel. To guarantee controlling of nonmetallic inclusions and determine a reasonable control target of total oxygen content in the gear steel, the effect of total oxygen content on nonmetallic inclusions in gear steel was studied. In this study, three kinds of Mn–Cr-system gear steels with different oxygen content were selected as research objects. The number, distribution, and size of nonmetallic inclusions in these gear steels were studied using an Aspex scanning electron microscope (Aspex SEM), the extreme value method, and fatigue test. The relationship between inclusions and the total oxygen content of gear steel was obtained. Under the experimental condition, with the decrease in total oxygen content, the density of the number of oxide inclusions decreases continuously, among which 5–10 μm small inclusions decrease most obviously. In contrast, the number density of large inclusions above 10 μm does not change obviously. Moreover, the results of the extreme value method and fatigue test show that when total oxygen mass fraction is high (0.0013%), the size of maximum oxide inclusion in the steel is relatively large, which is more than 10 μm higher than the inclusion in 0.0010% or 0.0005% total oxygen steel. Simultaneously, when total oxygen mass fraction is low (≤0.0010%), the change of total oxygen mass fraction (0.0010% and 0.0005%) has little effect on the maximum inclusion size in steel.

     

  • loading
  • [1]
    Dengo C, Meneghetti G, Dabalà M. Experimental analysis of bending fatigue strength of plain and notched case-hardened gear steels. Int J Fatigue, 2015, 80: 145 doi: 10.1016/j.ijfatigue.2015.04.015
    [2]
    陳暉, 周細應. 汽車齒輪鋼的研究進展. 材料科學與工程學報, 2011, 29(3):478

    Chen H, Zhou X Y. Research progress of gear steel for automobiles. J Mater Sci Eng, 2011, 29(3): 478
    [3]
    王新華, 姜敏, 于會香, 等. 超低氧特殊鋼中非金屬夾雜物研究. 煉鋼, 2015, 31(6):1

    Wang X H, Jiang M, Yu H X, et al. Investigation on non-metallic inclusions in ultra-low oxygen special steels. Steelmaking, 2015, 31(6): 1
    [4]
    Murakami Y, Yamashita Y. Prediction of life and scatter of fatigue failure originated at nonmetallic inclusions. Procedia Eng, 2014, 74: 6 doi: 10.1016/j.proeng.2014.06.214
    [5]
    Murakami Y, Beretta S. Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications. Extremes, 1999, 2(2): 123 doi: 10.1023/A:1009976418553
    [6]
    Krewerth D, Lippmann T, Weidner A, et al. Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime. Int J Fatigue, 2016, 84: 40 doi: 10.1016/j.ijfatigue.2015.11.001
    [7]
    Bathias C. There is no infinite fatigue life in metallic materials. Fatigue Fract Eng Mater Struct, 1999, 22(7): 559 doi: 10.1046/j.1460-2695.1999.00183.x
    [8]
    徐匡迪. 關于潔凈鋼的若干基本問題. 金屬學報, 2009, 45(3):257 doi: 10.3321/j.issn:0412-1961.2009.03.001

    Xu K D. Certain basic subjects on clean steel. Acta Metall Sin, 2009, 45(3): 257 doi: 10.3321/j.issn:0412-1961.2009.03.001
    [9]
    姜敏, 王新華, 陳斌, 等. 超低氧特殊鋼中非金屬夾雜物控制技術//第九屆中國鋼鐵年會論文集. 北京, 2013: 1

    Jiang M, Wang X H, Chen B, et al. Control of non-metallic inclusions in extra low oxygen special steel // Proceedings of the 9th China Steel Conference. Beijing, 2013: 1
    [10]
    Uesugi T. Recent development of bearing steel in Japan. Tetsu-To-Hagane, 1988, 74(10): 1889 doi: 10.2355/tetsutohagane1955.74.10_1889
    [11]
    Uesugi T. Recent development of bearing steel in Japan. Trans Iron Steel Inst Jpn, 1988, 28(11): 893 doi: 10.2355/isijinternational1966.28.893
    [12]
    Uesugi T. Production of high-carbon chromium bearing steel in vertical type continuous caster. Trans Iron Steel Inst Jpn, 1986, 26(7): 614 doi: 10.2355/isijinternational1966.26.614
    [13]
    Tsubota K, Fukumoto I. Production and quality of high cleanliness bearing steel // Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 637.
    [14]
    Kawakami K, Taniguchi T, Nakashima K. Generation mechanisms of non-metallic inclusions in high-cleanliness steel. Tetsu-to-Hagané, 2007, 93(12): 743
    [15]
    Yang J, Wang X H, Jiang M, et al. Effect of calcium treatment on non-metallic inclusions in ultra-low oxygen steel refined by high basicity high Al2O3 slag. J Iron Steel Res Int, 2011, 18(7): 8 doi: 10.1016/S1006-706X(11)60083-6
    [16]
    徐匡迪, 肖麗俊. 特殊鋼精煉中的脫氧及夾雜物控制. 鋼鐵, 2012, 47(10):1

    Xu K D, Xiao L J. Deoxidation and inclusion control in special steel refining. Iron Steel, 2012, 47(10): 1
    [17]
    楊虎林, 何平, 翟玉春. 高品質軸承鋼超低氧含量和非金屬夾雜物控制的進展. 特殊鋼, 2013, 34(2):16 doi: 10.3969/j.issn.1003-8620.2013.02.005

    Yang H L, He P, Zhai Y C. Progress on control of ultra-low-oxygen content and non-metallic inclusions in high quality bearing steel. Special Steel, 2013, 34(2): 16 doi: 10.3969/j.issn.1003-8620.2013.02.005
    [18]
    陳天明. 超低氧齒輪鋼非金屬夾雜物控制熱力學計算及應用. 鋼鐵, 2011, 46(4):26

    Chen T M. Thermodynamic calculation and application of non-metallic inclusions for ultra-low-oxygen gear steel. Iron Steel, 2011, 46(4): 26
    [19]
    王新華, 李金柱, 姜敏, 等. 高端重要用途特殊鋼非金屬夾雜物控制技術研究. 煉鋼, 2017, 33(2):50

    Wang X H, Li J Z, Jiang M, et al. Investigation on technology of non-metallic inclusion control for high grade special steels of important uses. Steelmaking, 2017, 33(2): 50
    [20]
    Ohnishi T, Shiwaku K, Kawasaki S, et al. Production of high carbon chromium bearing steel in BOF-CC process. Tetsu-to-Hagané, 1987, 73(3): 513
    [21]
    魏鵬遠, 姜敏, 楊疊, 等. 高速鐵路車軸用25CrMoVNi超低氧鋼RH精煉過程非金屬夾雜物的行為. 特殊鋼, 2015, 36(3):1 doi: 10.3969/j.issn.1003-8620.2015.03.001

    Wei P Y, Jiang M, Yang D, et al. Behavior of nonmetallic inclusions in ultra-low oxygen steel 25CrMoVNi for high speed rail axles during RH refining process. Special Steel, 2015, 36(3): 1 doi: 10.3969/j.issn.1003-8620.2015.03.001
    [22]
    楊俊, 杜江, 陳波濤, 等. 超低氧精煉時鈣處理對氧化物夾雜的影響. 鋼鐵, 2015, 50(1):19

    Yang J, Du J, Chen B T, et al. Influence of calcium treatment on oxide inclusions in ultra-low oxygen refining process. Iron Steel, 2015, 50(1): 19
    [23]
    楊疊, 姜敏, 雷少龍, 等. 超低氧鋼中復合夾雜物形成的實驗室研究. 鋼鐵研究學報, 2014, 26(1):12

    Yang D, Jiang M, Lei S L, et al. Laboratory study on formation of complex inclusions in ultra-low oxygen steel. J Iron Steel Res, 2014, 26(1): 12
    [24]
    董文亮, 倪紅衛, 張華, 等. 超低氧齒輪鋼28MnCr5中鎂鋁尖晶石夾雜物的控制. 鋼鐵研究學報, 2015, 27(3):14

    Dong W L, Ni H W, Zhang H, et al. Control of magnesia-alumina spinel inclusions in the ultra-low-oxygen gear steel 28MnCr5. J Iron Steel Res, 2015, 27(3): 14
    [25]
    于會香, 邵肖靜, 張靜, 等. 采用ASPEX掃描電鏡研究鋼中總氧和非金屬夾雜物的定量關系. 工程科學學報, 2015, 37(增刊 1):35

    Yu H X, Shao X J, Zhang J, et al. Study on the quantitative relationship between total oxygen content and non-metallic inclusion in steel with ASPEX SEM. Chin J Eng, 2015, 37(Suppl 1): 35
    [26]
    Murakami Y, Toriyama T, Coudert E. Instructions for a new method of inclusion rating and correlations with the fatigue limit. J Test Eval, 1994, 22(4): 318 doi: 10.1520/JTE11840J
    [27]
    Beretta S, Murakami Y. Statistical analysis of defects for fatigue strength prediction and quality control of materials. Fatigue Fract Eng Mater Struct, 1998, 21(9): 1049 doi: 10.1046/j.1460-2695.1998.00104.x
    [28]
    Shi G, Atkinson H V, Sellars C M, et al. Comparison of extreme value statistics methods for predicting maximum inclusion size in clean steels. Ironmaking Steelmaking, 1999, 26(4): 239 doi: 10.1179/030192399677095
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (2638) PDF downloads(143) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频