Citation: | HE Xiao-fei, HU Cheng-fei, XU Le, WANG Mao-qiu. Effect of total oxygen on the nonmetallic inclusion of gear steel[J]. Chinese Journal of Engineering, 2021, 43(4): 537-544. doi: 10.13374/j.issn2095-9389.2020.03.05.001 |
[1] |
Dengo C, Meneghetti G, Dabalà M. Experimental analysis of bending fatigue strength of plain and notched case-hardened gear steels. Int J Fatigue, 2015, 80: 145 doi: 10.1016/j.ijfatigue.2015.04.015
|
[2] |
陳暉, 周細應. 汽車齒輪鋼的研究進展. 材料科學與工程學報, 2011, 29(3):478
Chen H, Zhou X Y. Research progress of gear steel for automobiles. J Mater Sci Eng, 2011, 29(3): 478
|
[3] |
王新華, 姜敏, 于會香, 等. 超低氧特殊鋼中非金屬夾雜物研究. 煉鋼, 2015, 31(6):1
Wang X H, Jiang M, Yu H X, et al. Investigation on non-metallic inclusions in ultra-low oxygen special steels. Steelmaking, 2015, 31(6): 1
|
[4] |
Murakami Y, Yamashita Y. Prediction of life and scatter of fatigue failure originated at nonmetallic inclusions. Procedia Eng, 2014, 74: 6 doi: 10.1016/j.proeng.2014.06.214
|
[5] |
Murakami Y, Beretta S. Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications. Extremes, 1999, 2(2): 123 doi: 10.1023/A:1009976418553
|
[6] |
Krewerth D, Lippmann T, Weidner A, et al. Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime. Int J Fatigue, 2016, 84: 40 doi: 10.1016/j.ijfatigue.2015.11.001
|
[7] |
Bathias C. There is no infinite fatigue life in metallic materials. Fatigue Fract Eng Mater Struct, 1999, 22(7): 559 doi: 10.1046/j.1460-2695.1999.00183.x
|
[8] |
徐匡迪. 關于潔凈鋼的若干基本問題. 金屬學報, 2009, 45(3):257 doi: 10.3321/j.issn:0412-1961.2009.03.001
Xu K D. Certain basic subjects on clean steel. Acta Metall Sin, 2009, 45(3): 257 doi: 10.3321/j.issn:0412-1961.2009.03.001
|
[9] |
姜敏, 王新華, 陳斌, 等. 超低氧特殊鋼中非金屬夾雜物控制技術//第九屆中國鋼鐵年會論文集. 北京, 2013: 1
Jiang M, Wang X H, Chen B, et al. Control of non-metallic inclusions in extra low oxygen special steel // Proceedings of the 9th China Steel Conference. Beijing, 2013: 1
|
[10] |
Uesugi T. Recent development of bearing steel in Japan. Tetsu-To-Hagane, 1988, 74(10): 1889 doi: 10.2355/tetsutohagane1955.74.10_1889
|
[11] |
Uesugi T. Recent development of bearing steel in Japan. Trans Iron Steel Inst Jpn, 1988, 28(11): 893 doi: 10.2355/isijinternational1966.28.893
|
[12] |
Uesugi T. Production of high-carbon chromium bearing steel in vertical type continuous caster. Trans Iron Steel Inst Jpn, 1986, 26(7): 614 doi: 10.2355/isijinternational1966.26.614
|
[13] |
Tsubota K, Fukumoto I. Production and quality of high cleanliness bearing steel // Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 637.
|
[14] |
Kawakami K, Taniguchi T, Nakashima K. Generation mechanisms of non-metallic inclusions in high-cleanliness steel. Tetsu-to-Hagané, 2007, 93(12): 743
|
[15] |
Yang J, Wang X H, Jiang M, et al. Effect of calcium treatment on non-metallic inclusions in ultra-low oxygen steel refined by high basicity high Al2O3 slag. J Iron Steel Res Int, 2011, 18(7): 8 doi: 10.1016/S1006-706X(11)60083-6
|
[16] |
徐匡迪, 肖麗俊. 特殊鋼精煉中的脫氧及夾雜物控制. 鋼鐵, 2012, 47(10):1
Xu K D, Xiao L J. Deoxidation and inclusion control in special steel refining. Iron Steel, 2012, 47(10): 1
|
[17] |
楊虎林, 何平, 翟玉春. 高品質軸承鋼超低氧含量和非金屬夾雜物控制的進展. 特殊鋼, 2013, 34(2):16 doi: 10.3969/j.issn.1003-8620.2013.02.005
Yang H L, He P, Zhai Y C. Progress on control of ultra-low-oxygen content and non-metallic inclusions in high quality bearing steel. Special Steel, 2013, 34(2): 16 doi: 10.3969/j.issn.1003-8620.2013.02.005
|
[18] |
陳天明. 超低氧齒輪鋼非金屬夾雜物控制熱力學計算及應用. 鋼鐵, 2011, 46(4):26
Chen T M. Thermodynamic calculation and application of non-metallic inclusions for ultra-low-oxygen gear steel. Iron Steel, 2011, 46(4): 26
|
[19] |
王新華, 李金柱, 姜敏, 等. 高端重要用途特殊鋼非金屬夾雜物控制技術研究. 煉鋼, 2017, 33(2):50
Wang X H, Li J Z, Jiang M, et al. Investigation on technology of non-metallic inclusion control for high grade special steels of important uses. Steelmaking, 2017, 33(2): 50
|
[20] |
Ohnishi T, Shiwaku K, Kawasaki S, et al. Production of high carbon chromium bearing steel in BOF-CC process. Tetsu-to-Hagané, 1987, 73(3): 513
|
[21] |
魏鵬遠, 姜敏, 楊疊, 等. 高速鐵路車軸用25CrMoVNi超低氧鋼RH精煉過程非金屬夾雜物的行為. 特殊鋼, 2015, 36(3):1 doi: 10.3969/j.issn.1003-8620.2015.03.001
Wei P Y, Jiang M, Yang D, et al. Behavior of nonmetallic inclusions in ultra-low oxygen steel 25CrMoVNi for high speed rail axles during RH refining process. Special Steel, 2015, 36(3): 1 doi: 10.3969/j.issn.1003-8620.2015.03.001
|
[22] |
楊俊, 杜江, 陳波濤, 等. 超低氧精煉時鈣處理對氧化物夾雜的影響. 鋼鐵, 2015, 50(1):19
Yang J, Du J, Chen B T, et al. Influence of calcium treatment on oxide inclusions in ultra-low oxygen refining process. Iron Steel, 2015, 50(1): 19
|
[23] |
楊疊, 姜敏, 雷少龍, 等. 超低氧鋼中復合夾雜物形成的實驗室研究. 鋼鐵研究學報, 2014, 26(1):12
Yang D, Jiang M, Lei S L, et al. Laboratory study on formation of complex inclusions in ultra-low oxygen steel. J Iron Steel Res, 2014, 26(1): 12
|
[24] |
董文亮, 倪紅衛, 張華, 等. 超低氧齒輪鋼28MnCr5中鎂鋁尖晶石夾雜物的控制. 鋼鐵研究學報, 2015, 27(3):14
Dong W L, Ni H W, Zhang H, et al. Control of magnesia-alumina spinel inclusions in the ultra-low-oxygen gear steel 28MnCr5. J Iron Steel Res, 2015, 27(3): 14
|
[25] |
于會香, 邵肖靜, 張靜, 等. 采用ASPEX掃描電鏡研究鋼中總氧和非金屬夾雜物的定量關系. 工程科學學報, 2015, 37(增刊 1):35
Yu H X, Shao X J, Zhang J, et al. Study on the quantitative relationship between total oxygen content and non-metallic inclusion in steel with ASPEX SEM. Chin J Eng, 2015, 37(Suppl 1): 35
|
[26] |
Murakami Y, Toriyama T, Coudert E. Instructions for a new method of inclusion rating and correlations with the fatigue limit. J Test Eval, 1994, 22(4): 318 doi: 10.1520/JTE11840J
|
[27] |
Beretta S, Murakami Y. Statistical analysis of defects for fatigue strength prediction and quality control of materials. Fatigue Fract Eng Mater Struct, 1998, 21(9): 1049 doi: 10.1046/j.1460-2695.1998.00104.x
|
[28] |
Shi G, Atkinson H V, Sellars C M, et al. Comparison of extreme value statistics methods for predicting maximum inclusion size in clean steels. Ironmaking Steelmaking, 1999, 26(4): 239 doi: 10.1179/030192399677095
|