Citation: | YIN Sheng-hua, SONG Qing, CHEN Wei, CHEN Xun. Pore model reconstruction of copper sulfide ore agglomerate and simulation of solution seepage[J]. Chinese Journal of Engineering, 2021, 43(4): 495-502. doi: 10.13374/j.issn2095-9389.2020.02.27.002 |
[1] |
Akinci G, Guven D E. Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination, 2011, 268(1-3): 221 doi: 10.1016/j.desal.2010.10.032
|
[2] |
Zeng J, Li J, Gou M, et al. Effective strategy for improving sludge treatment rate and microbial mechanisms during chromium bioleaching of tannery sludge. Process Biochem, 2019, 83: 159 doi: 10.1016/j.procbio.2019.05.019
|
[3] |
Yin S H, Chen W, Chen X, et al. Bacterial-mediated recovery of copper from low-grade copper sulfide using acid-processed rice straw. Bioresource Technol, 2019, 288: 121605 doi: 10.1016/j.biortech.2019.121605
|
[4] |
尹升華, 王雷鳴, 吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143
Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143
|
[5] |
Petersen J. Heap leaching as a key technology for recovery of values from low-grade ores— —a brief overview. Hydrometallurgy, 2016, 165: 206 doi: 10.1016/j.hydromet.2015.09.001
|
[6] |
陳威, 尹升華, 齊炎, 等. 添加劑對硫化銅礦生物浸出規律的影響. 中南大學學報:自然科學版, 2019, 50(7):1507
Chen W, Yin S H, Qi Y, et al. Effect of additives on bioleaching of copper sulfide ores. J Central South Univ Sci Technol, 2019, 50(7): 1507
|
[7] |
曾毅君, 李建華, 李鐵球, 等. 中國含泥鈾礦酸法堆浸制粒技術的應用. 鈾礦冶, 2002, 21(4):182 doi: 10.3969/j.issn.1000-8063.2002.04.003
Zeng Y J, Li J H, Li T Q, et al. Technical application of agglomerated acidic heap leaching of clay bearing uranium ore in China. Uran Min Metall, 2002, 21(4): 182 doi: 10.3969/j.issn.1000-8063.2002.04.003
|
[8] |
劉新星, 王龍, 謝建平, 等. 低品位氧化銅礦柱浸試驗研究. 礦冶工程, 2016, 36(1):83 doi: 10.3969/j.issn.0253-6099.2016.01.021
Liu X X, Wang L, Xie J P, et al. Experimental study on column leach of low grade copper oxide. Min Metall Eng, 2016, 36(1): 83 doi: 10.3969/j.issn.0253-6099.2016.01.021
|
[9] |
Chen W, Yin S H, Wu A X, et al. Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater. Bioresour Technol, 2020, 297: 122453 doi: 10.1016/j.biortech.2019.122453
|
[10] |
Zhou A, Zhang Q, Bai R N, et al. Characterization of coal micro-pore structure and simulation on the seepage rules of low-pressure water based on CT scanning data. Minerals, 2016, 6(3): 78 doi: 10.3390/min6030078
|
[11] |
Tang B W, Gao S, Wang Y G, et al. Pore structure analysis of electrolytic manganese residue based permeable brick by using industrial CT. Construct Build Mater, 2019, 208: 697 doi: 10.1016/j.conbuildmat.2019.03.066
|
[12] |
Bell S L, Welch G D, Bennett P G. Development of ammoniacal lixiviants for the in-situ leaching of chalcopyrite. Hydrometallurgy, 1995, 39(1-3): 11 doi: 10.1016/0304-386X(95)00022-9
|
[13] |
尹升華, 陳威, 劉家明, 等. 次生硫化銅礦制粒試驗. 工程科學學報, 2019, 41(9):1127
Yin S H, Chen W, Liu J M, et al. Agglomeration experiment of secondary copper sulfide ore. Chin J Eng, 2019, 41(9): 1127
|
[14] |
Nosrati A, Quast K, Xu D F, et al. Agglomeration and column leaching behaviour of nickel laterite ores: effect of ore mineralogy and particle size distribution. Hydrometallurgy, 2014, 146: 29 doi: 10.1016/j.hydromet.2014.03.004
|
[15] |
尹江生, 賀銳崗, 沈凱寧. 某金礦選礦廠尾礦制粒堆浸工業試驗. 黃金, 2007, 28(2):42 doi: 10.3969/j.issn.1001-1277.2007.02.012
Yin J S, He R G, Shen K N. Commercial tests of tailing briquetting-heap leaching in a certain gold mine. Gold, 2007, 28(2): 42 doi: 10.3969/j.issn.1001-1277.2007.02.012
|
[16] |
Quaicoe I, Nosrati A, Skinner W, et al. Agglomeration and column leaching behaviour of goethitic and saprolitic nickel laterite ores. Miner Eng, 2014, 65: 1 doi: 10.1016/j.mineng.2014.04.001
|
[17] |
尹升華, 王雷鳴, 陳勛, 等. 不同堆體結構下礦巖散體內溶液滲流規律. 中南大學學報: 自然科學版, 2018, 49(4):949
Yin S H, Wang L M, Chen X, et al. Seepage law of solution inside ore granular under condition of different heap constructions. J Central South Univ Sci Technol, 2018, 49(4): 949
|
[18] |
Yin S H, Wu A X, Hu K J, et al. Visualization of flow behavior during bioleaching of waste rock dumps under saturated and unsaturated conditions. Hydrometallurgy, 2013, 133: 1 doi: 10.1016/j.hydromet.2012.11.009
|
[19] |
薛振林, 張有志, 劉志義, 等. 礦石形狀對浸堆結構及滲流場影響機制. 中國礦業, 2018, 27(12):128
Xue Z L, Zhang Y Z, Liu Z Y, et al. Effects of ore shape on pore structure and seepage velocity field in heap leaching. China Min Mag, 2018, 27(12): 128
|
[20] |
劉超. 酸浸條件下氧化銅礦巖散體孔隙結構及滲流演化規律[學位論文]. 北京: 北京科技大學, 2017
Liu C. Evolution of the Pore Structure and Flow in Granular Ore Heaps for Copper Oxides Acid Leaching[Dissertation]. Beijing: University of Science and Technology Beijing, 2017
|
[21] |
吳愛祥, 王少勇, 楊保華. 堆浸散體顆粒結構對溶浸液滲流規律的影響. 礦業研究與開發, 2011, 31(5):22
Wu A X, Wang S Y, Yang B H. Effect of particle structure on permeability of leaching dump. Min Res Dev, 2011, 31(5): 22
|
[22] |
Lo A, Nosrati A, Addai-Mensah J. Particle and pore dynamics under column leaching of goethitic and saprolitic nickel laterite agglomerates. Adv Powder Technol, 2016, 27(6): 2370 doi: 10.1016/j.apt.2016.11.009
|
[23] |
楊保華, 吳愛祥, 繆秀秀. 基于圖像處理的礦石顆粒三維微觀孔隙結構演化. 工程科學學報, 2016, 38(3):328
Yang B H, Wu A X, Miao X X. 3D micropore structure evolution of ore particles based on image processing. Chin J Eng, 2016, 38(3): 328
|
[24] |
Bird M B, Butler S L, Hawkes C D, et al. Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL. Comput Geosci, 2014, 73: 6 doi: 10.1016/j.cageo.2014.08.009
|
[25] |
Wu A X, Yin S H, Yao B H, et al. Study on preferential flow in dump leaching of low-grade ores. Hydrometallurgy, 2007, 87(3-4): 124 doi: 10.1016/j.hydromet.2007.03.001
|
[26] |
賴才書, 余文章, 陳森煜. 影響金礦堆浸工藝的因素. 礦產資源綜合利用, 2013(6):9
Lai C S, Yu W Z, Chen S Y. The parameters affecting on heap leaching of gold ore. Multipurpose Utilization Miner Resour, 2013(6): 9
|