<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
CAO Shi-yao, WU Qiu-chi, YAN Xiao-qin, JI Zhen, CAO Lin. Synthesis and characterization of nano-chambersite[J]. Chinese Journal of Engineering, 2020, 42(7): 869-874. doi: 10.13374/j.issn2095-9389.2020.02.19.001
Citation: CAO Shi-yao, WU Qiu-chi, YAN Xiao-qin, JI Zhen, CAO Lin. Synthesis and characterization of nano-chambersite[J]. Chinese Journal of Engineering, 2020, 42(7): 869-874. doi: 10.13374/j.issn2095-9389.2020.02.19.001

Synthesis and characterization of nano-chambersite

doi: 10.13374/j.issn2095-9389.2020.02.19.001
More Information
  • Chambersite (Mn3B7O13Cl) is both a rare inorganic macromolecular manganese chloroborate and a rare mineral. The chambersite deposit was firstly discovered in Jixian, Tianjin, China, which is the only mineable chambersite deposit in the world. Due to its unique multi-element composition and structure type, it has great application potential as a light-emitting material in biological anti-virus, anti-tumor, and anti-microbial applications, as well as a nuclear-protection and LED applications. However, as yet there are few reports on the material science of chambersite. Rare-earth and transition-group ion-activated borate are important constituent systems in luminescent materials. In this paper, nano-chambersite and rare-earth-element Eu3+-doped nano-chambersite were successfully synthesized by Sol-Gel method. The crystal structure of the nano-chambersite was characterized by X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy. The performance comparison between natural chambersite and synthetic chambersite was provided to provide a basis for the rational development and utilization of chambersite. The results show that the artificially synthesized chambersite has a spherical shape with a particle size of less than 50 nm, and has the same phase structure as natural chambersite. It belongs to the orthorhombic system and has a structure similar to that of spinel. The inter planar spacing of (010) is 0.8565 nm. Under 490 nm excitation light, the natural chambersite, artificially synthesized chambersite, and rare-earth-element Eu3+-doped chambersite crystal all showed a Mn2+ emitting center. The Mn2+ that filled the center of the tetrahedral lattice site of the crystal exhibited a green emission, whereas the Mn2+ that filled the center of the octahedral lattice site of the crystal exhibited a red emission. The artificially synthesized chambersite showed a unique red shift of the emission spectrum with increases in the emitting-light wavelength. This unique phenomenon is beneficial to the conversion of cold and warm luminescence. Eu3+ doping in the artificially synthesized chamversite further increased the intensity of the luminescence.

     

  • loading
  • [1]
    別洛夫В Ф, 毛俊明. 用原子核γ射線共振吸收法研究鐵電體方硼石族Mn3B7O13Cl. 地質地球化學, 1980(9):72

    Вeлов В Ф, Mao J M. Study on the chambersite Mn3B7O13Cl with nucleon γ ray resonance absorption. Geol Geochem, 1980(9): 72
    [2]
    曾貽善. 錳方硼石的合成及其地球化學意義. 地質學報, 1983(4):401

    Zen Y S. Synthesis of chambersite and its geochemical implication. Acta Geologica Sinica, 1983(4): 401
    [3]
    柏慧凝, 紀箴, 曹林, 等. 錳方硼石結構與性能的研究進展. 粉末冶金技術, 2018, 36(1):73

    Bai H N, Ji Z, Cao L, et al. Research progress on structure and properties of chambersite. Powder Metall Technol, 2018, 36(1): 73
    [4]
    張然, 許虹, 李梅梅. 稀有礦物天津薊縣錳方硼石振動光譜特征研究. 巖礦測試, 2018, 37(2):139

    Zhang R, Xu H, Li M M. Vibrational spectroscopy characteristics of rare mineral chambersite in jixian of Tianjin, China. Rock Mineral Anal, 2018, 37(2): 139
    [5]
    Ci Z P, Zhu G, Que M D, et al. Photoluminescence properties of Sr10(PO4)5.5(BO4)0.5BO2: Re3+ (Re=Eu, Dy Sm) phosphors for white light-emitting diodes. J Aust Ceram Soc, 2013, 49(1): 58
    [6]
    梁棟, 曹林, 賈成廠. 納米錳方硼石的制備及其電磁特性. 粉末冶金技術, 2015, 33(2):111 doi: 10.3969/j.issn.1001-3784.2015.02.006

    Liang D, Cao L, Jia C C. Preparation and electromagnetic properties of Chambersite nano-powders. Powder Metall Technol, 2015, 33(2): 111 doi: 10.3969/j.issn.1001-3784.2015.02.006
    [7]
    Wu H P, Pan S L, Poeppelmeier K R, et al. K3B6O10Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. J Am Chem Soc, 2011, 133(20): 7786 doi: 10.1021/ja111083x
    [8]
    Bums P C, Grice J D, Hawthorne F C. Borate minerals; I, Polyhedral clusters and fundamental building blocks. Can Mineralogist, 1995, 33(5): 1131
    [9]
    Bachmann V, Ronda C, Oeckler O, et al. Color point tuning for (Sr, Ca, Ba) Si2O2N2: Eu2+ for white light LEDs. Chem Mater, 2009, 21(2): 316 doi: 10.1021/cm802394w
    [10]
    Takahashi K, Hirosaki N, Xie R J, et al. Luminescence properties of blue La1-xCexAl(Si6-zAlz)(N10-zOz)(z~1) oxynitride phosphors and their application in white light-emitting diode. Appl Phys Lett, 2007, 91(9): 091923 doi: 10.1063/1.2779093
    [11]
    He H, Fu R L, Zhang X L, et al. Photoluminescence spectra tuning of Eu2+ activated orthosilicate phosphors used for white light emitting diodes. J Mater Sci Mater Electron, 2009, 20(5): 433 doi: 10.1007/s10854-008-9747-5
    [12]
    Kottaisamy M, Thiyagarajan P, Mishra J, et al. Color tuning of Y3Al5O12: Ce phosphor and their blend for white LEDs. Mater Res Bull, 2008, 43(7): 1657 doi: 10.1016/j.materresbull.2007.09.005
    [13]
    Jang H S, Won Y H, Vaidyanathan S, et al. Emission band change of (Sr1-xMx)3SiO5: Eu2+ (M=Ca, Ba) phosphor for white light sources using blue/near-ultraviolet LEDs. J Electrochem Soc, 2009, 156(6): J138 doi: 10.1149/1.3106042
    [14]
    Sakuma K, Hirosaki N, Xie R J. Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-SiAlON ceramic phosphors. J Luminescence, 2007, 126(2): 843 doi: 10.1016/j.jlumin.2006.12.006
    [15]
    Matsuyama I, Yamashita N, Nakamura K. Photoluminescence of the SrS: Mn2+ phosphor and Pb2+-sensitized luminescence of the SrS: Pb2+, Mn2+ phosphor. J Phys Soc Jpn, 1989, 58(2): 741 doi: 10.1143/JPSJ.58.741
    [16]
    Vink A P, de Bruin M A, Roke S, et al. Luminescence of exchange coupled pairs of transition metal ions. J Electrochem Soc, 2001, 148(7): E313 doi: 10.1149/1.1375169
    [17]
    Yamashita N, Maekawa S, Nakamura K. Influence of paired Mn2+ centers on the luminescence spectra of CaS: Mn2+. Jpn J Appl Phys, 1990, 29(9): 1729
    [18]
    Barthou C, Benoit J, Benalloul P, et al. Mn2+ concentration effect on the optical properties of Zn2SiO4: Mn phosphors. J Electrochem Soc, 1994, 141(2): 524 doi: 10.1149/1.2054759
    [19]
    Ronda C R, Amrein T. Evidence for exchange-induced luminescence in Zn2SiO4: Mn. J Luminescence, 1996, 69(5-6): 245 doi: 10.1016/S0022-2313(96)00103-2
    [20]
    Kamran M A, Zhang Y Y, Liu R B, et al. A model on the Mn2+ luminescence band red shift with Mn(Ⅱ) doping and aggregation within CdS: Mn microwires. Chin Phys Lett, 2014, 31(6): 067802 doi: 10.1088/0256-307X/31/6/067802
    [21]
    Zhang X W, Hu Q, Lin J Y, et al. Efficient and stable deep blue polymer light-emitting devices based on β-phase poly(9,9-dioctylfluorene). Appl Phys Lett, 2013, 103(15): 153301 doi: 10.1063/1.4824766
    [22]
    Lojpur V, Nikoli? M G, Jovanovi? D, et al. Luminescence thermometry with Zn2SiO4: Mn2+ powder. Appl Phys Lett, 2013, 103(14): 141912 doi: 10.1063/1.4824208
    [23]
    Gao W R, Wang X M, Xu W Q, et al. Luminescent composite polymer fibers: In situ synthesis of silver nanoclusters in electrospun polymer fibers and application. Mater Sci Eng C, 2014, 42: 333 doi: 10.1016/j.msec.2014.05.020
    [24]
    Yuan J P, Guo W W, Wang E K. Oligonucleotide stabilized silver nanoclusters as fluorescence probe for drug–DNA interaction investigation. Anal Chim Acta, 2011, 706(2): 338 doi: 10.1016/j.aca.2011.08.043
    [25]
    Tian Y, Cao Y Y, Pang F, et al. Ag nanoparticles supported on N-doped graphene hybrids for catalytic reduction of 4-nitrophenol. RSC Adv, 2014, 4(81): 43204 doi: 10.1039/C4RA06089J
    [26]
    Guo W W, Yuan J P, Wang E K. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem Commun, 2009(23): 3395 doi: 10.1039/b821518a
    [27]
    Dhanya S, Saumya V, Rao T P. Synthesis of silver nanoclusters, characterization and application to trace level sensing of nitrate in aqueous media. Electrochim Acta, 2013, 102: 299 doi: 10.1016/j.electacta.2013.04.017
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (1854) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频