Citation: | MA Zhi-chao, TANG Xiao-zhi, GUO Ya-fang. Atomistic simulation of detwinning process and its interaction with self-interstitial atoms in magnesium[J]. Chinese Journal of Engineering, 2021, 43(4): 545-551. doi: 10.13374/j.issn2095-9389.2020.02.18.004 |
[1] |
Yu Q, Qi L, Chen K, et al. The nanostructured origin of deformation twinning. Nano Lett, 2012, 12(2): 887 doi: 10.1021/nl203937t
|
[2] |
Kelley E W, Hosford W F. Plane-strain compression of magnesium and magnesium alloy crystals. Trans Metall Soc AIME, 1968, 242(1): 5
|
[3] |
Guo Y F, Xu S, Tang X Z, er al. Twinnability of hcp metals at the nanoscale. J Appl Phys, 2014, 115(22): 224902 doi: 10.1063/1.4881756
|
[4] |
孟強, 蔡慶伍, 江海濤, 等. AZ31鎂合金單軸拉伸過程中的{0002}雙峰織構觀察. 稀有金屬, 2011, 35(2):159 doi: 10.3969/j.issn.0258-7076.2011.02.001
Meng Q, Cai Q W, Jiang H T, et al. {0002} double peak texture of AZ31 magnesium alloy during uniaxial tension. Chin J Rare Met, 2011, 35(2): 159 doi: 10.3969/j.issn.0258-7076.2011.02.001
|
[5] |
Wang Y N, Huang J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg?Al?Zn alloy. Acta Mater, 2007, 55(3): 897 doi: 10.1016/j.actamat.2006.09.010
|
[6] |
Yin S M, Yang F, Yang X M, et al. The role of twinning–detwinning on fatigue fracture morphology of Mg?3%Al?1%Zn alloy. Mater Sci Eng A, 2008, 494(1-2): 397 doi: 10.1016/j.msea.2008.04.056
|
[7] |
張愔, 劉天模, 徐舜, 等. 擠壓態AZ31鎂合金單向壓縮過程中的退孿生行為. 材料熱處理學報, 2013, 34(8):26
Zhang Y, Liu T M, Xu S, et al. Detwinning behavior of an extruded AZ31 magnesium alloy during uniaxial compression. Trans Mater Heat Treat, 2013, 34(8): 26
|
[8] |
Sarker D, Chen D L. Detwinning and strain hardening of an extruded magnesium alloy during compression. Scripta Mater, 2012, 67(2): 165 doi: 10.1016/j.scriptamat.2012.04.007
|
[9] |
Morrow B M, McCabe R J, Cerreta E K, et al. In-situ TEM observation of twinning and detwinning during cyclic loading in Mg. Metall Mater Trans A, 2014, 45(1): 36 doi: 10.1007/s11661-013-1765-0
|
[10] |
Sun Q, Xia T, Tan L, et al. Influence of {
|
[11] |
婁超, 張喜燕, 汪潤紅, 等. 退孿生行為以及{
Lou C, Zhang X Y, Wang R H, et al. Effects of untwinning and {
|
[12] |
Mendelev M I, King A H. The interactions of self-interstitials with twin boundaries. Philos Mag, 2013, 93(10-12): 1268 doi: 10.1080/14786435.2012.747012
|
[13] |
Yu W S, Shen S P. Energetics of point defect interacting with grain boundaries undergone plastic deformations. Int J Plast, 2016, 85: 93 doi: 10.1016/j.ijplas.2016.07.004
|
[14] |
李曉彤, 湯笑之, 郭雅芳. 經驗原子勢下鋁鎂合金中溶質原子向位錯芯遷移的最低能量路徑. 工程科學學報, 2019, 41(7):898
Li X T, Tang X Z, Guo Y F. Minimum energy path of a solute atom diffusing to an edge dislocation core in Al-Mg alloys based on empirical atomic potential. Chin J Eng, 2019, 41(7): 898
|
[15] |
Hood G M. Point defect diffusion in α-Zr. J Nucl Mater, 1988, 159: 149 doi: 10.1016/0022-3115(88)90091-8
|
[16] |
Peng Q, Ji W, Huang H C, et al. Stability of self-interstitial atoms in hcp-Zr. J Nucl Mater, 2012, 429(1-3): 233 doi: 10.1016/j.jnucmat.2012.06.010
|
[17] |
Samolyuk G D, Barashev A V, Golubov S I, et al. Analysis of the anisotropy of point defect diffusion in hcp Zr. Acta Mater, 2014, 78: 173 doi: 10.1016/j.actamat.2014.06.024
|
[18] |
Serra A, Bacon D J, Osetsky Y N. Strengthening and microstructure modification associated with moving twin boundaries in hcp metals. Philos Mag Lett, 2007, 87(7): 451 doi: 10.1080/09500830701244812
|
[19] |
鄧玉福, 王鈺鑫, 何燕, 等. 原子模擬金屬鋯中點缺陷行為. 沈陽師范大學學報(自然科學版), 2018, 36(4):295
Deng Y F, Wang Y X, He Y, et al. Atomic simulation of defect behavior in metal zirconium. J Shengyang Normal Univ Nat Sci Ed, 2018, 36(4): 295
|
[20] |
Hatami F, Feghhi S A H, Arjhangmehr A, et al. Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study. J Nucl Mater, 2016, 480: 362 doi: 10.1016/j.jnucmat.2016.05.036
|
[21] |
Pasianot R C. Self-interstitials structure in the hcp metals: A further perspective from first-principles calculations. J Nucl Mater, 2016, 481: 147 doi: 10.1016/j.jnucmat.2016.09.021
|
[22] |
Monti A M, Sarce A, Grande N S D, et al. Point defects and sink strength in h. c. p. metals. Philos Mag A, 1991, 63(5): 925 doi: 10.1080/01418619108213925
|
[23] |
de Diego N, Bacon D J. A computer simulation study of interstitial-twin boundary interactions in h. c. p. metals. Modell Simul Mater Sci Eng, 1995, 3(6): 797 doi: 10.1088/0965-0393/3/6/004
|
[24] |
Liu X Y, Ohotnicky P P, Adams J B, et al. Anisotropic surface segregation in Al-Mg alloys. Surf Sci, 1997, 373(2-3): 357 doi: 10.1016/S0039-6028(96)01154-5
|
[25] |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117(1): 1 doi: 10.1006/jcph.1995.1039
|
[26] |
Li J. AtomEye: an efficient atomistic configuration viewer. Modell Simul Mater Sci Eng, 2003, 11(2): 173 doi: 10.1088/0965-0393/11/2/305
|
[27] |
Tang X Z, Zu Q, Guo Y F. The diffusive character of extension twin boundary migration in magnesium. Mater, 2018, 2: 208
|
[28] |
Luque A, Ghazisaeidi M, Curtin W A. A new mechanism for twin growth in Mg alloys. Acta Mater, 2014, 81: 442 doi: 10.1016/j.actamat.2014.08.052
|
[29] |
Gleiter H. The mechanism of grain boundary migration. Acta Metall, 1969, 17(5): 565 doi: 10.1016/0001-6160(69)90115-1
|
[30] |
Gong M Y, Hirth J P, Liu Y, et al. Interface structures and twinning mechanisms of {
|
[31] |
Bacon D J. A review of computer models of point defects in hcp metals. J Nucl Mater, 1988, 159: 176.
|