<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 4
Mar.  2021
Turn off MathJax
Article Contents
MA Zhi-chao, TANG Xiao-zhi, GUO Ya-fang. Atomistic simulation of detwinning process and its interaction with self-interstitial atoms in magnesium[J]. Chinese Journal of Engineering, 2021, 43(4): 545-551. doi: 10.13374/j.issn2095-9389.2020.02.18.004
Citation: MA Zhi-chao, TANG Xiao-zhi, GUO Ya-fang. Atomistic simulation of detwinning process and its interaction with self-interstitial atoms in magnesium[J]. Chinese Journal of Engineering, 2021, 43(4): 545-551. doi: 10.13374/j.issn2095-9389.2020.02.18.004

Atomistic simulation of detwinning process and its interaction with self-interstitial atoms in magnesium

doi: 10.13374/j.issn2095-9389.2020.02.18.004
More Information
  • Corresponding author: E-mail: yfguo@bjtu.edu.cn
  • Received Date: 2020-02-18
  • Publish Date: 2021-04-26
  • Magnesium and its alloys have attracted extensive attention due to their favorable mechanical properties, such as low density and high specific strength. The detwinning process of {$10\bar 12$} tensile twins subjected to periodic loading is one of the microscopic mechanisms of fatigue damage in magnesium and its alloys. Moreover, self-interstitial atoms (SIAs) widely exist as a typical kind of point defects in metals. The migration, aggregation, and interaction with other defects, of SIAs affect the metal mechanical properties. In this work, molecular dynamics simulation was employed to study the detwinning process of {$10\bar 12$} twins under shear loads in magnesium, focusing on the interaction between the twin boundary and SIAs in the detwinning process. A simulation system containing two coherent twin boundaries (CTBs) with periodic boundary conditions applied along the two in-plane directions was adopted. The classic embedded atom method (EAM) interatomic potential developed by Liu et. al was used for simulation accuracy and comparison with other studies. The simulation results show that the SIAs are absorbed by the CTBs and migrate along with them. The absorbed SIAs can be released with the disappearance of the CTBs during the detwinning process. By the SIA adsorption and release, detwinning process will result in a more concentrated SIA distribution. The simulation results reveal that SIAs will be adsorbed by CTB if the distance between the CTB and SIA is less than 0.752 nm at 0 K and 3.59 nm at 273 K. The energy barrier of the adsorption process is also obtained using the nudged elastic band (NEB) method. The SIA spatial distribution changes after the SIA interactions with CTB in detwinning process. Given that the crystal defects such as dislocation loops can be induced by the dense distribution of SIAs at a long timescale, this study clarifies the fatigue mechanical properties of magnesium and magnesium alloys subjected to periodic loading.

     

  • loading
  • [1]
    Yu Q, Qi L, Chen K, et al. The nanostructured origin of deformation twinning. Nano Lett, 2012, 12(2): 887 doi: 10.1021/nl203937t
    [2]
    Kelley E W, Hosford W F. Plane-strain compression of magnesium and magnesium alloy crystals. Trans Metall Soc AIME, 1968, 242(1): 5
    [3]
    Guo Y F, Xu S, Tang X Z, er al. Twinnability of hcp metals at the nanoscale. J Appl Phys, 2014, 115(22): 224902 doi: 10.1063/1.4881756
    [4]
    孟強, 蔡慶伍, 江海濤, 等. AZ31鎂合金單軸拉伸過程中的{0002}雙峰織構觀察. 稀有金屬, 2011, 35(2):159 doi: 10.3969/j.issn.0258-7076.2011.02.001

    Meng Q, Cai Q W, Jiang H T, et al. {0002} double peak texture of AZ31 magnesium alloy during uniaxial tension. Chin J Rare Met, 2011, 35(2): 159 doi: 10.3969/j.issn.0258-7076.2011.02.001
    [5]
    Wang Y N, Huang J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg?Al?Zn alloy. Acta Mater, 2007, 55(3): 897 doi: 10.1016/j.actamat.2006.09.010
    [6]
    Yin S M, Yang F, Yang X M, et al. The role of twinning–detwinning on fatigue fracture morphology of Mg?3%Al?1%Zn alloy. Mater Sci Eng A, 2008, 494(1-2): 397 doi: 10.1016/j.msea.2008.04.056
    [7]
    張愔, 劉天模, 徐舜, 等. 擠壓態AZ31鎂合金單向壓縮過程中的退孿生行為. 材料熱處理學報, 2013, 34(8):26

    Zhang Y, Liu T M, Xu S, et al. Detwinning behavior of an extruded AZ31 magnesium alloy during uniaxial compression. Trans Mater Heat Treat, 2013, 34(8): 26
    [8]
    Sarker D, Chen D L. Detwinning and strain hardening of an extruded magnesium alloy during compression. Scripta Mater, 2012, 67(2): 165 doi: 10.1016/j.scriptamat.2012.04.007
    [9]
    Morrow B M, McCabe R J, Cerreta E K, et al. In-situ TEM observation of twinning and detwinning during cyclic loading in Mg. Metall Mater Trans A, 2014, 45(1): 36 doi: 10.1007/s11661-013-1765-0
    [10]
    Sun Q, Xia T, Tan L, et al. Influence of { $$} twin characteristics on detwinning in Mg?3Al?1Zn alloy. Mater Sci Eng A, 2018, 735: 243 doi: 10.1016/j.msea.2018.08.051
    [11]
    婁超, 張喜燕, 汪潤紅, 等. 退孿生行為以及{ $$}孿晶片層結構對鎂合金力學性能的影響. 金屬學報, 2013, 49(3):291 doi: 10.3724/SP.J.1037.2012.00582

    Lou C, Zhang X Y, Wang R H, et al. Effects of untwinning and { $$} twin lamellar structure on the mechanical properties of Mg alloy. Acta Metall Sin, 2013, 49(3): 291 doi: 10.3724/SP.J.1037.2012.00582
    [12]
    Mendelev M I, King A H. The interactions of self-interstitials with twin boundaries. Philos Mag, 2013, 93(10-12): 1268 doi: 10.1080/14786435.2012.747012
    [13]
    Yu W S, Shen S P. Energetics of point defect interacting with grain boundaries undergone plastic deformations. Int J Plast, 2016, 85: 93 doi: 10.1016/j.ijplas.2016.07.004
    [14]
    李曉彤, 湯笑之, 郭雅芳. 經驗原子勢下鋁鎂合金中溶質原子向位錯芯遷移的最低能量路徑. 工程科學學報, 2019, 41(7):898

    Li X T, Tang X Z, Guo Y F. Minimum energy path of a solute atom diffusing to an edge dislocation core in Al-Mg alloys based on empirical atomic potential. Chin J Eng, 2019, 41(7): 898
    [15]
    Hood G M. Point defect diffusion in α-Zr. J Nucl Mater, 1988, 159: 149 doi: 10.1016/0022-3115(88)90091-8
    [16]
    Peng Q, Ji W, Huang H C, et al. Stability of self-interstitial atoms in hcp-Zr. J Nucl Mater, 2012, 429(1-3): 233 doi: 10.1016/j.jnucmat.2012.06.010
    [17]
    Samolyuk G D, Barashev A V, Golubov S I, et al. Analysis of the anisotropy of point defect diffusion in hcp Zr. Acta Mater, 2014, 78: 173 doi: 10.1016/j.actamat.2014.06.024
    [18]
    Serra A, Bacon D J, Osetsky Y N. Strengthening and microstructure modification associated with moving twin boundaries in hcp metals. Philos Mag Lett, 2007, 87(7): 451 doi: 10.1080/09500830701244812
    [19]
    鄧玉福, 王鈺鑫, 何燕, 等. 原子模擬金屬鋯中點缺陷行為. 沈陽師范大學學報(自然科學版), 2018, 36(4):295

    Deng Y F, Wang Y X, He Y, et al. Atomic simulation of defect behavior in metal zirconium. J Shengyang Normal Univ Nat Sci Ed, 2018, 36(4): 295
    [20]
    Hatami F, Feghhi S A H, Arjhangmehr A, et al. Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study. J Nucl Mater, 2016, 480: 362 doi: 10.1016/j.jnucmat.2016.05.036
    [21]
    Pasianot R C. Self-interstitials structure in the hcp metals: A further perspective from first-principles calculations. J Nucl Mater, 2016, 481: 147 doi: 10.1016/j.jnucmat.2016.09.021
    [22]
    Monti A M, Sarce A, Grande N S D, et al. Point defects and sink strength in h. c. p. metals. Philos Mag A, 1991, 63(5): 925 doi: 10.1080/01418619108213925
    [23]
    de Diego N, Bacon D J. A computer simulation study of interstitial-twin boundary interactions in h. c. p. metals. Modell Simul Mater Sci Eng, 1995, 3(6): 797 doi: 10.1088/0965-0393/3/6/004
    [24]
    Liu X Y, Ohotnicky P P, Adams J B, et al. Anisotropic surface segregation in Al-Mg alloys. Surf Sci, 1997, 373(2-3): 357 doi: 10.1016/S0039-6028(96)01154-5
    [25]
    Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117(1): 1 doi: 10.1006/jcph.1995.1039
    [26]
    Li J. AtomEye: an efficient atomistic configuration viewer. Modell Simul Mater Sci Eng, 2003, 11(2): 173 doi: 10.1088/0965-0393/11/2/305
    [27]
    Tang X Z, Zu Q, Guo Y F. The diffusive character of extension twin boundary migration in magnesium. Mater, 2018, 2: 208
    [28]
    Luque A, Ghazisaeidi M, Curtin W A. A new mechanism for twin growth in Mg alloys. Acta Mater, 2014, 81: 442 doi: 10.1016/j.actamat.2014.08.052
    [29]
    Gleiter H. The mechanism of grain boundary migration. Acta Metall, 1969, 17(5): 565 doi: 10.1016/0001-6160(69)90115-1
    [30]
    Gong M Y, Hirth J P, Liu Y, et al. Interface structures and twinning mechanisms of { $$} twins in hexagonal metals. Mater Res Lett, 2017, 5(7): 449 doi: 10.1080/21663831.2017.1336496
    [31]
    Bacon D J. A review of computer models of point defects in hcp metals. J Nucl Mater, 1988, 159: 176.
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)

    Article views (2152) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频