<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
ZHAO Jing-yu, ZHANG Yong-li, DENG Jun, SONG Jia-jia, WANG Tao, ZHANG Yan-ni, ZHANG Yu-xuan. Key functional groups affecting the release of gaseous products during spontaneous combustion of coal[J]. Chinese Journal of Engineering, 2020, 42(9): 1139-1148. doi: 10.13374/j.issn2095-9389.2020.02.17.001
Citation: ZHAO Jing-yu, ZHANG Yong-li, DENG Jun, SONG Jia-jia, WANG Tao, ZHANG Yan-ni, ZHANG Yu-xuan. Key functional groups affecting the release of gaseous products during spontaneous combustion of coal[J]. Chinese Journal of Engineering, 2020, 42(9): 1139-1148. doi: 10.13374/j.issn2095-9389.2020.02.17.001

Key functional groups affecting the release of gaseous products during spontaneous combustion of coal

doi: 10.13374/j.issn2095-9389.2020.02.17.001
More Information
  • Coal–oxygen reaction theory, which is widely accepted, considers the reaction of coal and oxygen during combustion. In this research, the characteristics of spontaneous coal combustion were assessed at a high temperature to investigate the internal relationship between the gaseous products of this reaction and the functional groups in coal molecules and to further reveal the micro-characteristics of spontaneous coal combustion. Our self-developed temperature-programmed experimental system and in situ diffuse reflectance infrared Fourier transform spectroscopy were adopted to analyze the correlation between the contents of gaseous products and active functional groups. Results reveal that the contents of indicator gases, such as CO and C2H4, increase and show a parabolic curve. In terms of active functional groups, as temperature increases, the content of aliphatic hydrocarbons initially increases and then decreases gradually. The content of C=C groups decreases throughout this study, and the content of oxygen-containing functional groups gradually increases after equilibrium is reached. Five characteristic temperatures are obtained on the basis of the variation in gaseous products, and four oxidation stages are further divided. The relationship between active functional groups and gases during different temperature stages is determined. At the critical temperature stage, the main active functional group affecting the release of CO, CO2, CH4, and C2H6 is carbonyl. Numerous alkyl chains and bridge bonds are broken at the crack?active?speedup temperature stage, and the primary active functional groups influencing the gas products are aliphatic hydrocarbons and carbonyl groups. The concentration of gases at the speedup?ignition temperature stage is negatively correlated with carbonyl and carboxyl groups. Therefore, the crack?active?speedup temperature stage in high-temperature oxidation is dangerous, and oxidation should be controlled before this stage to reduce the loss of personnel and materials.

     

  • loading
  • [1]
    周福寶. 瓦斯與煤自燃共存研究(Ⅰ): 致災機理. 煤炭學報, 2012, 37(5):843

    Zhou F B. Study on the coexistence of gas and coal spontaneous combustion (Ⅰ): Disaster mechanism. <italic>J China Coal Soc</italic>, 2012, 37(5): 843
    [2]
    Cheng W M, Hu X M, Xie J, et al. An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties. <italic>Fuel</italic>, 2017, 210: 826 doi: 10.1016/j.fuel.2017.09.007
    [3]
    趙駿, 左海濱, 龍思陽, 等. 熱溶煤的燃燒特性. 工程科學學報, 2018, 40(3):330

    Zhao J, Zuo H B, Long S Y, et al. Combustion characteristics of thermal dissolution coal. <italic>Chin J Eng</italic>, 2018, 40(3): 330
    [4]
    Dong X W, Wen Z C, Wang F S, et al. Law of gas production during coal heating oxidation. <italic>Int J Min Sci Technol</italic>, 2019, 29(4): 617 doi: 10.1016/j.ijmst.2019.06.011
    [5]
    Grossman S L, Davidi S, Cohen H. Emission of toxic and fire hazardous gases from open air coal stockpiles. <italic>Fuel</italic>, 1994, 73(7): 1184 doi: 10.1016/0016-2361(94)90257-7
    [6]
    嚴榮林, 錢國胤. 煤的分子結構與煤氧化自燃的氣體產物. 煤炭學報, 1995, 20(增刊): 58

    Yan R L, Qian G Y. Molecular structure of coal and gases produced by coal oxidation. J China Coal Soc, 1995, 20(Suppl): 58
    [7]
    何萍, 王飛宇, 唐修義, 等. 煤氧化過程中氣體的形成特征與煤自燃指標氣體選擇. 煤炭學報, 1994, 19(6):635

    He P, Wang F Y, Tang X Y, et al. Characteristics of gases produced in process of coal oxidation and their relations with selection of gas markers for prediction of spontaneous combustion. <italic>J China Coal Soc</italic>, 1994, 19(6): 635
    [8]
    劉浩雄. 江源煤礦采空區煤自燃氣體特征及其對瓦斯爆炸影響研究[學位論文]. 徐州: 中國礦業大學, 2019

    Liu H X. Characteristics of Coal Spontaneous Combustion Gas in Goaf of Jiang Yuan Coal Mine and Its Influence on Gas Explosion[Dissertation]. Xuzhou: China University of Mining and Technology, 2019
    [9]
    賈傳志, 丁佳麗. 基于灰色關聯分析的煤自燃預測指標可信度研究. 內蒙古煤炭經濟, 2018(12):4

    Jia C Z, Ding J L. Reliability prediction of coal spontaneous combustion based on grey correlation analysis. <italic>Inner Mongolia Coal Econ</italic>, 2018(12): 4
    [10]
    Niu H Y, Deng X L, Li S L, et al. Experiment study of optimization on prediction index gases of coal spontaneous combustion. <italic>J Cent South Univ</italic>, 2016, 23(9): 2321 doi: 10.1007/s11771-016-3290-y
    [11]
    Wang D M, Dou G L, Zhong X X, et al. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. <italic>Fuel</italic>, 2014, 117: 218 doi: 10.1016/j.fuel.2013.09.070
    [12]
    楊永辰, 趙賀, 尹博. 煤炭自燃標志性氣體實驗研究. 煤礦安全, 2012, 43(9):17

    Yang Y C, Zhao H, Yin B. Experimental research about coal spontaneous combustion index gas. <italic>Saf Coal Mines</italic>, 2012, 43(9): 17
    [13]
    趙婧昱. 淮南煤氧化動力學過程及其微觀結構演化特征研究[學位論文]. 西安: 西安科技大學, 2017

    Zhao J Y. Study on the Kinetics and Micro-structures Characteristics of Huainan Coal in the Oxidation Process[Dissertation]. Xi'an: Xi'an University of Science and Technology, 2017
    [14]
    Liu X F, Song D Z, He X Q, et al. Coal macromolecular structural characteristic and its influence on coalbed methane adsorption. <italic>Fuel</italic>, 2018, 222: 687 doi: 10.1016/j.fuel.2018.03.015
    [15]
    趙文彬, 蔡海倫, 宋蕾, 等. 同一煤層煤樣不同溫度下煤自燃規律研究. 煤炭技術, 2018, 37(11):153

    Zhao W B, Cai H L, Song L, et al. Study on spontaneous combustion of coal at different temperatures in same coal seam. <italic>Coal Technol</italic>, 2018, 37(11): 153
    [16]
    王福生, 孫超, 董憲偉, 等. 煤的微觀結構對自燃特性的影響分析. 煤炭技術, 2017, 36(12):139

    Wang F S, Sun C, Dong X W, et al. Analysis of microstructure of coal effect on spontaneous combustion tendency. <italic>Coal Technol</italic>, 2017, 36(12): 139
    [17]
    余明高, 賈海林, 徐俊. 烏達煙煤的微觀結構與自燃的關聯性分析. 遼寧工程技術大學學報: 自然科學版, 2006, 25(6):819

    Yu M G, Jia H L, Xu J. Relationship analysis between micro-structure of bituminous coal from Wuda and coal spontaneous combustion. <italic>J Liaoning Tech Univ Nat Sci Ed</italic>, 2006, 25(6): 819
    [18]
    玄偉偉, 王倩, 張建勝. 褐煤自燃傾向測定及其低溫氧化反應過程研究. 煤炭學報, 2016, 41(10):2460

    Xuan W W, Wang Q, Zhang J S. Spontaneous combustion propensity and low-temperature oxidation process of lignite. <italic>J China Coal Soc</italic>, 2016, 41(10): 2460
    [19]
    張嬿妮, 鄧軍, 楊華, 等. 不同變質程度煤微觀結構特征的試驗研究. 安全與環境學報, 2014, 14(4):67

    Zhang Y N, Deng J, Yang H, et al. Experimental study of the characteristic features of the microstructure of coal at different coal sorts. <italic>J Saf Environ</italic>, 2014, 14(4): 67
    [20]
    唐一博, 李云飛, 薛生, 等. 長期水浸對不同煙煤自燃參數與微觀特性影響的實驗研究. 煤炭學報, 2017, 42(10):2642

    Tang Y B, Li Y F, Xue S, et al. Experimental investigation of long-term water immersion effect on spontaneous combustion parameters and microscopic characteristics of bituminous. <italic>J China Coal Soc</italic>, 2017, 42(10): 2642
    [21]
    萬有吉, 曹占清, 張杉, 等. 不同煤種低溫氧化下的官能團分布規律. 煤炭與化工, 2017, 40(2):23

    Wan Y J, Cao Z Q, Zhang S, et al. Distribution regulation of functional groups under low temperature of different coals. <italic>Coal Chem Ind</italic>, 2017, 40(2): 23
    [22]
    Deng J, Xiao Y, Li Q W, et al. Experimental studies of spontaneous combustion and anaerobic cooling of coal. <italic>Fuel</italic>, 2015, 157: 261 doi: 10.1016/j.fuel.2015.04.063
    [23]
    Kong B, Li Z H, Wang E Y, et al. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique. <italic>Process Saf Environ Prot</italic>, 2018, 119: 285 doi: 10.1016/j.psep.2018.08.002
    [24]
    趙婧昱, 張宇軒, 宋佳佳, 等. 高溫貧氧下不同溫度階段煤體自燃指標氣體測試. 西安科技大學學報, 2019, 39(2):189

    Zhao J Y, Zhang Y X, Song J J, et al. Coal spontaneous combustion indicator gases analysis of different temperature stages upon high-temperature and low-oxygen condition. <italic>J Xi'an Univ Sci Technol</italic>, 2019, 39(2): 189
    [25]
    Qu L N. A study on the prediction method of coal spontaneous combustion development period based on critical temperature. <italic>Environ Sci Pollut Res</italic>, 2018, 25(12): 35748
    [26]
    金永飛, 郭軍, 文虎, 等. 煤自燃高溫貧氧氧化燃燒特性參數的實驗研究. 煤炭學報, 2015, 40(3):596

    Jin Y F, Guo J, Wen H, et al. Experimental study on the high temperature lean oxidation combustion characteristic parameters of coal spontaneous combustion. <italic>J China Coal Soc</italic>, 2015, 40(3): 596
    [27]
    朱令起, 鄧毅, 王福生. 不同變質程度煤自燃指標氣體優選. 煤炭技術, 2019, 38(9):71

    Zhu L Q, Deng Y, Wang F S. Index gas optimization of coal spontaneous combustion with different metamorphic degree. <italic>Coal Technol</italic>, 2019, 38(9): 71
    [28]
    Zhao J Y, Deng J, Song J J, et al. Effectiveness of a high-temperature-programmed experimental system in simulating particle size effects on hazardous gas emissions in bituminous coal. <italic>Saf Sci</italic>, 2019, 115: 353 doi: 10.1016/j.ssci.2019.02.008
    [29]
    Zhao J Y, Deng J, Wang T, et al. Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. <italic>Energy</italic>, 2019, 169: 587 doi: 10.1016/j.energy.2018.12.100
    [30]
    鄧軍, 趙婧昱, 張嬿妮. 基于指標氣體增長率分析法測定煤自燃特征溫度. 煤炭科學技術, 2014, 42(7):49

    Deng J, Zhao J Y, Zhang Y N. Study on determination of coal spontaneous combustion characteristic temperature based on analysis method of index gas growth-rate. <italic>Coal Sci Technol</italic>, 2014, 42(7): 49
    [31]
    李國輝, 畢建乙, 張輝, 等. 斜溝煤礦13號煤層自然發火特性試驗研究. 煤炭與化工, 2018, 41(4):111

    Li G H, Bi J Y, Zhang H, et al. Study on natural ignition characteristic test of No.13 coal seam. <italic>Coal Chem Ind</italic>, 2018, 41(4): 111
    [32]
    Deng J, Zhao J Y, Xiao Y, et al. Thermal analysis of the pyrolysis and oxidation behaviour of 1/3 coking coal. <italic>J Therm Anal Calorim</italic>, 2017, 129(3): 1779 doi: 10.1007/s10973-017-6331-3
    [33]
    Zhao J Y, Deng J, Chen L, et al. Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation. <italic>Energy</italic>, 2019, 181: 136 doi: 10.1016/j.energy.2019.05.158
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article views (1699) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频