Citation: | GAO Zhi-gang, HE Yu-ting, MA Bin-lin, ZHANG Tian-yu. Evaluation method of initial fatigue quality of aircraft wing flange fastener holes[J]. Chinese Journal of Engineering, 2021, 43(3): 442-450. doi: 10.13374/j.issn2095-9389.2020.01.13.005 |
[1] |
Chikmath L, Ramanath M N, Dattaguru B. Fatigue life benefits of cold worked holes in fastener joints. Procedia Struct Integr, 2019, 14: 922 doi: 10.1016/j.prostr.2019.07.072
|
[2] |
Correia J A F O, Blasón S, De Jesus A M P, et al. Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model. Eng Fail Anal, 2016, 69: 15 doi: 10.1016/j.engfailanal.2016.04.003
|
[3] |
Zhao T L, Liu Z Y, Du C W, et al. Modeling for corrosion fatigue crack initiation life based on corrosion kinetics and equivalent initial flaw size theory. Corros Sci, 2018, 142: 277 doi: 10.1016/j.corsci.2018.07.031
|
[4] |
中國航空研究院. 軍用飛機疲勞·損傷容限·耐久性設計手冊. 北京: 中國航空研究院出版社, 1994
Chinese Aviation Institute. Military Aircraft Fatigue, Damage Tolerance and Durability Design Manual. Beijing: Chinese Aviation Institute Press, 1994
|
[5] |
劉文珽, 鄭旻仲, 費斌軍. 概率斷裂力學與概率損傷容限/耐久性. 北京: 北京航空航天大學出版社, 1999
Liu W T, Zheng M Z, Fei B J. Probability Fracture Mechanics and Probabilistic Damage Tolerance/Durability. Beijing: Beihang University Press, 1999
|
[6] |
Fawaz S A. Equivalent initial flaw size testing and analysis of transport aircraft skin splices. Fatigue Fract Eng Mater Struct, 2003, 26(3): 279 doi: 10.1046/j.1460-2695.2003.00637.x
|
[7] |
Makeev A, Nikishkov Y, Armanios E. A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models. Int J Fatigue, 2007, 29(1): 141 doi: 10.1016/j.ijfatigue.2006.01.018
|
[8] |
王志智, 王普選, 聶學洲. 一種緊固孔細節原始疲勞質量評定方法. 航空學報, 1998, 19(4):88
Wang Z Z, Wang P X, Nie X Z. Evaluation approach to initial fatigue quality of fastener hole. Acta Aeron Astron Sin, 1998, 19(4): 88
|
[9] |
張永濤. 某型飛機機翼盒段耐久性分析[學位論文]. 南京: 南京航空航天大學, 2008
Zhang Y T. Durability Analysis of An Aircraft Wing Box[Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008
|
[10] |
Xiang Y B, Lu Z Z, Liu Y M. Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I: uniaxial loading. Int J Fatigue, 2010, 32(2): 341 doi: 10.1016/j.ijfatigue.2009.07.011
|
[11] |
Nicolas A, Co N E C, Burns J T, et al. Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects. Eng Fracture Mech, 2019, 220: 106661 doi: 10.1016/j.engfracmech.2019.106661
|
[12] |
Rudd J L. Application of the Equivalent Initial Quality Method AFFDL-TM-76-83-FBE. Dayton: Wright AFB, 1977
|
[13] |
Rudd J L, Gray T D. Quantification of fastener-hole quality. J Aircraft, 1978, 15(3): 143 doi: 10.2514/3.58332
|
[14] |
Yang J N. Statistical Estimation of Economic Life for Aircraft Structures. J Aircraft, 1980, 17(7): 528 doi: 10.2514/3.57935
|
[15] |
Wang D Y. An Investigation of Initial Fatigue Quality: STPZ8860S. West Conshohochen: ASTM Special Technical Publication, 1982
|
[16] |
航空航天部 AFFD 系統辦公室. 美國空軍耐久性手冊背景材料: 第Ⅷ卷. 西安: 航空航天部 AFFD 系統辦公室, 1989
AFFD System Engineering Office of the Department of Aeronautics and Astronautics. The Background Information of USAF Durability Design Handbook: Vol.Ⅷ. Xi’an: AFFD System Engineering Office of the Department of Aeronautics and Astronautics, 1989
|
[17] |
Moreira P M G P, de Matos P F P, de Castro P M S T. Fatigue striation spacing and equivalent initial flaw size in Al 2024-T3 riveted specimens. Theoret Appl Fract Mech, 2005, 43(1): 89 doi: 10.1016/j.tafmec.2004.12.005
|
[18] |
Shahani A R, Kashani H M. Assessment of equivalent initial flaw size estimation methods in fatigue life prediction using compact tension specimen tests. Eng Fract Mech, 2013, 99: 48 doi: 10.1016/j.engfracmech.2013.01.007
|
[19] |
Wu Y Z, Xu Y W, Guo X, et al. Fatigue life prediction based on equivalent initial flaw size for Al-Li alloy 2297 under spectrum loading. Int J Fatigue, 2017, 103: 39 doi: 10.1016/j.ijfatigue.2017.04.015
|
[20] |
曹昌年, 王志智, 趙選民. 緊固孔原始疲勞質量評定及符合性檢查. 西北工業大學學報, 2000, 18(1):15 doi: 10.3969/j.issn.1000-2758.2000.01.004
Cao C N, Wang Z Z, Zhao X M. Evaluation and coincidence check for initial fatigue quality of fastener hole. J Northwest Polytech Univ, 2000, 18(1): 15 doi: 10.3969/j.issn.1000-2758.2000.01.004
|
[21] |
張勝, 何宇廷, 張騰, 等. 飛機典型連接結構原始疲勞質量評估. 機械強度, 2016, 38(3):480
Zhang S, He Y T, Zhang T, et al. Assessment on initial fatigue quality of aircraft typical connected structure. J Mech Strength, 2016, 38(3): 480
|
[22] |
周俊杰, 王生楠. 飛機機翼壁板緊固孔細節原始疲勞質量評估. 西北工業大學學報, 2018, 36(1):91 doi: 10.3969/j.issn.1000-2758.2018.01.013
Zhou J J, Wang S N. Initial fatigue quality assessment for aircraft wing panel fastener hole. J Northwest Polytech Univ, 2018, 36(1): 91 doi: 10.3969/j.issn.1000-2758.2018.01.013
|
[23] |
何宇廷, 張騰, 崔榮洪, 等. 飛機結構壽命控制原理與技術. 北京: 國防工業出版社, 2017
He Y T, Zhang T, Cui R H, et al. Theory and Technology of Aircraft Structural Life Control. Beijing: National Defense Industry Press, 2017
|
[24] |
Provan J W. Probabilistic Fracture Mechanics and Reliability. Leiden: Martinus Nijhoff Publishers, 1987
|
[25] |
高鎮同. 疲勞應用統計學. 北京: 國防工業出版社, 1986
Gao Z T. Fatigue Application Statistics. Beijing: National Defense Industry Press, 1986
|
[26] |
陳振龍, 陳宜治, 龔小慶, 等. 概率論與數理統計. 杭州: 浙江工商大學出版社, 2016
Chen Z L, Chen Y Z, Gong X Q, et al. Probability Theory and Mathematical Statistics. Hangzhou: Zhejiang Gongshang University Press, 2016
|