<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
LIU Fen, DAI Ming-jiang, LIN Song-sheng, SHI Qian, SUN Hui. Electrical and magnetic properties of (In, Co) co-doped ZnO films deposited using radio frequency magnetron sputtering[J]. Chinese Journal of Engineering, 2021, 43(3): 385-391. doi: 10.13374/j.issn2095-9389.2020.01.11.002
Citation: LIU Fen, DAI Ming-jiang, LIN Song-sheng, SHI Qian, SUN Hui. Electrical and magnetic properties of (In, Co) co-doped ZnO films deposited using radio frequency magnetron sputtering[J]. Chinese Journal of Engineering, 2021, 43(3): 385-391. doi: 10.13374/j.issn2095-9389.2020.01.11.002

Electrical and magnetic properties of (In, Co) co-doped ZnO films deposited using radio frequency magnetron sputtering

doi: 10.13374/j.issn2095-9389.2020.01.11.002
More Information
  • Corresponding author: E-mail:huisun@sdu.edu.cn
  • Received Date: 2020-01-11
  • Publish Date: 2021-03-26
  • Diluted magnetic semiconductors (DMSs) have attracted much attention in recent years due to their dual control of charge and spin degrees of freedom in carriers. Potential applications of DMSs include spin light-emitting diodes, spin field-effect transistors, magnetoresistance random access memory, and ultrafast optical switches. However, the Curie temperature (Tc) of most DMSs below ambient temperature limits the efficiency of these devices. Thus, the biggest challenge for developing DMS materials has been producing host materials that exhibit ferromagnetic behavior above ambient temperature. A series of theoretical simulations and experiments show that the Tc value of ZnO-based DMSs could satisfy this requirement. Incorporation of selective transition metal elements (e.g., Fe2+, Co2+, Ni2+, and Mn2+) has been confirmed as an effective way to enhance the magnetic properties of ZnO. In the present research, (In, Co) co-doped ZnO (ICZO) films were deposited by radio frequency sputtering at 100 ℃ on a glass substrate. The sputtering process was performed through In, Co, and ZnO co-sputtering. The presence of ICZO films has been adjusted by changing the target sputtering power. The variation of electric and magnetic properties of the film was studied with different In content. The composition, morphology, structure, electric and magnetic properties of films were characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, atomic force microscopy, electron probe microanalyzer, X-ray diffractometer, Hall effect analysis, and vibrating sample magnetometer. The effect of carrier concentration on the magnetic properties of the film was analyzed extensively. These results show that, in the presence of In, the carrier concentration increases, thereby optimizing films’ conductivity. All the films present ferromagnetic behavior at room temperature. Besides, with an influence of bound magnetic polaron model and carrier-mediated exchange mechanisms on the film’s saturation magnetization, carrier-concentration dependent behavior can be expressed in three different regions.

     

  • loading
  • [1]
    Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronic: a spin-based electronics vision for the future. Science, 2001, 294(5546): 1488 doi: 10.1126/science.1065389
    [2]
    Jindal S, Sharma P. Optical and magnetic properties of Dy3+ doped CdS dilute magnetic semiconductor nanoparticles. Mater Sci Semicond Process, 2020, 108: 104884 doi: 10.1016/j.mssp.2019.104884
    [3]
    Li Y, Li J M, Yu Z R, et al. Study on the high magnetic field processed ZnO based diluted magnetic semiconductors. Ceram Int, 2019, 45(16): 19583 doi: 10.1016/j.ceramint.2019.07.011
    [4]
    Ohno H. Marking nonmagnetic semiconductors ferromagnetic. Science, 1998, 281(5379): 951 doi: 10.1126/science.281.5379.951
    [5]
    Jeon H C, Li M K, Lee S J, et al. The distinct behavior of specific heat of diluted magnetic semiconductor (Ga, Mn)As quantum wells. Curr Appl Phys, 2015, 15(Suppl 2): S26
    [6]
    Li H B, Qiao Y F, Li J, et al. A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosens Bioelectron, 2016, 77: 378 doi: 10.1016/j.bios.2015.09.066
    [7]
    陳衛賓, 劉學超, 卓世異, 等. 質子輻照對Yb摻雜ZnO稀磁半導體薄膜缺陷與磁性的影響. 無機材料學報, 2018, 33(8):903 doi: 10.15541/jim20170420

    Chen W B, Liu X C, Zhuo S Y, et al. Influence of proton irradiation on defect and magnetism of Yb-doped ZnO dluted magnetic semiconductor thin films. J Inorg Mater, 2018, 33(8): 903 doi: 10.15541/jim20170420
    [8]
    Al-Zahrani J H, El-Hagary M, El-Taher A. Gamma irradiation induced effects on optical properties and single oscillator parameters of Fe-doped CdS diluted magnetic semiconductors thin films. Mater Sci Semicond Process, 2015, 39: 74 doi: 10.1016/j.mssp.2015.04.042
    [9]
    Zutic I, Fabian J, Das Sarma S. Spintronics: fundamentals and applications. Rev Mod Phys, 2004, 76: 323 doi: 10.1103/RevModPhys.76.323
    [10]
    Robkhob P, Tang I M, Thongmee S. Magnetic properties of the dilute magnetic semiconductor Zn1?xCoxO nanoparticles. J Supercond Novel Magn, 2019, 32: 3637 doi: 10.1007/s10948-019-5135-z
    [11]
    Obeid M M, Jappor H R, Al-Marzoki K, et al. Unraveling the effect of Gd doping on the structural, optical, and magnetic properties of ZnO based diluted magnetic semiconductor nanorods. RSC Adv, 2019, 9(57): 33207 doi: 10.1039/C9RA04750F
    [12]
    Zhong M, Wang S W, Li Y, et al. Room temperature ferromagnetic Cr-Ni codoped ZnO diluted magnetic semiconductors synthesized by hydrothermal method under high pulsed magnetic field. Ceram Int, 2015, 41(1): 451 doi: 10.1016/j.ceramint.2014.08.091
    [13]
    王雪濤, 朱麗萍, 葉志高, 等. N摻雜對Co?ZnO薄膜電學和磁學性能的影響. 無機材料學報, 2010, 25(7):711 doi: 10.3724/SP.J.1077.2010.00711

    Wang X T, Zhu L P, Ye Z G, et al. Influence of N dopant on the electric and magnetic properties of Co doped ZnO thin films. J Inorg Mater, 2010, 25(7): 711 doi: 10.3724/SP.J.1077.2010.00711
    [14]
    劉戰合, 王曉璐, 姬金祖, 等. AZO透明導電膜電磁散射光電參數影響試驗. 工程科學學報, 2018, 40(10):1259

    Liu Z H, Wang X L, Ji J Z, et al. Influence of photoelectric parameters for AZO transparent conductive films on electromagnetic scattering characteristics. Chin J Eng, 2018, 40(10): 1259
    [15]
    Zang Z G. Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films. Appl Phys Lett, 2018, 112(4): 042106 doi: 10.1063/1.5017002
    [16]
    Li C L, Zang Z G, Han C, et al. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy, 2017, 40: 195 doi: 10.1016/j.nanoen.2017.08.013
    [17]
    Sluiter M H F, Kawazoe Y, Sharma P, et al. First principles based design and experimental evidence for a ZnO-based ferromagnet at room temperature. Phys Rev Lett, 2005, 94(18): 187204 doi: 10.1103/PhysRevLett.94.187204
    [18]
    Zong Y, Sun Y, Meng S Y, et al. Doping effect and oxygen defects boost room temperature ferromagnetism of Co-doped ZnO nanoparticles: experimental and theoretical studies. RSC Adv, 2019, 9(40): 23012 doi: 10.1039/C9RA03620B
    [19]
    Dinia A, Schmerber G, Meny C, et al. Room-temperature ferromagnetism in Zn1?xCoxO magnetic semiconductors prepared by sputtering. J Appl Phys, 2005, 97(12): 123908 doi: 10.1063/1.1937478
    [20]
    Shatnawi M, Alsmadi A M, Bsoul I, et al. Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. J Alloys Compd, 2016, 655: 244 doi: 10.1016/j.jallcom.2015.09.166
    [21]
    Siddheswaran R, Mangalaraja R V, Gomez M E, et al. Room temperature ferromagnetism in combustion synthesized nanocrystalline Co, Al co-doped ZnO. J Alloys Compd, 2013, 581: 146 doi: 10.1016/j.jallcom.2013.06.117
    [22]
    Kumar S, Tripathi D M, Vaibhav P, et al. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties. J Magn Magn Mater, 2016, 419: 68 doi: 10.1016/j.jmmm.2016.06.007
    [23]
    Paul S, Dalal B, Das M, et al. Enhanced magnetic properties of In-Mn-codoped plasmonic ZnO nanoflowers: evidence of delocalized charge carrier-mediated ferromagnetic coupling. Chem Mater, 2019, 31(19): 8191 doi: 10.1021/acs.chemmater.9b03059
    [24]
    Wang X T, Zhu L P, Zhang L Q, et al. Properties of Ni doped and Ni-Ga co-doped ZnO thin films prepared by pulsed laser deposition. J Alloys Compd, 2011, 509(7): 3282 doi: 10.1016/j.jallcom.2010.10.049
    [25]
    劉喬亞, 楊平. 不同構型下ZnO基稀磁半導體的第一性原理研究. 電子科技, 2018, 31(2):44

    Liu Q Y, Yang P. First-principles study on ZnO-based diluted magnetic semiconductors in different doping configurations. Electron Sci Technol, 2018, 31(2): 44
    [26]
    Luthra A V. Tweaking electrical and magnetic properties of Al-Ni co-doped ZnO nanopowders. Ceram Int, 2014, 40(9): 14927 doi: 10.1016/j.ceramint.2014.06.089
    [27]
    Henni A, Merrouche A, Telli L, et al. Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition. J Electroanal Chem, 2016, 763: 149 doi: 10.1016/j.jelechem.2015.12.037
    [28]
    Yoo R, Cho S, Song M J, et al. Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent simulant. Sens Actuators B, 2015, 221: 217 doi: 10.1016/j.snb.2015.06.076
    [29]
    Sun H, Chen S C, Wang C H, et al. Electrical and magnetic properties of (Al, Co) co-doped ZnO films deposited by RF magnetron sputtering. Surf Coat Technol, 2019, 359: 390 doi: 10.1016/j.surfcoat.2018.10.105
    [30]
    Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst, 1976, 32: 751 doi: 10.1107/S0567739476001551
    [31]
    Lu Z L, Hsu H S, Tzeng Y H, et al. Tunable magnetic and transport properties of single crystalline (Co, Ga)-codoped ZnO films. Appl Phys Lett, 2009, 95(6): 062509 doi: 10.1063/1.3204016
    [32]
    Chen S C, Wang C H, Sun H, et al. Microstructure, electrical and magnetic properties of (Ga, Co)?ZnO films by radio frequency magnetron co-sputtering. Surf Coat Technol, 2016, 303: 203 doi: 10.1016/j.surfcoat.2016.03.064
    [33]
    Coey J M D, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater, 2005, 4: 173 doi: 10.1038/nmat1310
    [34]
    Dietl T, Ohno H, Matsukura F, et at. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287(5455): 1019 doi: 10.1126/science.287.5455.1019
    [35]
    Griffin K A, Pakhomov A B, Wang C M, et al. Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. Phys Rev Lett, 2005, 94(15): 157204 doi: 10.1103/PhysRevLett.94.157204
    [36]
    Behan A J, Mokhtari A, Blythe H J, et al. Two magnetic regimes in doped ZnO corresponding to a dilute magnetic semiconductor and a dilute magnetic insulator. Phys Rev Lett, 2008, 100(4): 047206 doi: 10.1103/PhysRevLett.100.047206
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (1961) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频