Citation: | ZHAO Qi-yue, FAN Yi, FAN En-dian, ZHAO Bai-jie, HUANG Yun-hua, CHENG Xue-qun, LI Xiao-gang. Influence factors and corrosion resistance criterion of low-alloy structural steel[J]. Chinese Journal of Engineering, 2021, 43(2): 255-262. doi: 10.13374/j.issn2095-9389.2020.01.10.002 |
[1] |
李曉剛. 耐蝕低合金結構鋼. 北京: 冶金工業出版社, 2017
Li X G. Corrosion-resistant Low Alloy Steel. Beijing: Metallurgical Industry Press, 2017
|
[2] |
Zhang S Q, Wan J F, Zhao Q Y, et al. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel. Corros Sci, 2020, 164: 108345 doi: 10.1016/j.corsci.2019.108345
|
[3] |
Zhang D Z, Gao X H, Du Y, et al. Effect of microstructure refinement on hydrogen-induced damage behavior of low alloy high strength steel for flexible riser. Mater Sci Eng A, 2019, 765: 138278
|
[4] |
李秀程, 李學達, 王學林, 等. 低合金鋼焊接熱影響區的微觀組織和韌性研究進展. 工程科學學報, 2017, 39(5):643
Li X C, Li X D, Wang X L, et al. Research progress on microstructures and toughness of welding heat-affected zone in low-alloy steel. Chin J Eng, 2017, 39(5): 643
|
[5] |
馬博, 彭艷, 劉云飛, 等. 低合金鋼Q345B動態再結晶動力學模型. 材料熱處理學報, 2010, 31(4):141
Ma B, Peng Y, Liu Y F, et al. Dynamic recrystallization kinetics model of low-alloy steel Q345B. Trans Mater Heat Treat, 2010, 31(4): 141
|
[6] |
殷勝, 朱紅丹. 屈服強度750 MPa低合金鋼高強度集裝箱用鋼的開發. 特殊鋼, 2019, 40(1):16 doi: 10.3969/j.issn.1003-8620.2019.01.005
Yin S, Zhu H D. Development of yield strength 750 MPa HSLA steel for container. Spec Steel, 2019, 40(1): 16 doi: 10.3969/j.issn.1003-8620.2019.01.005
|
[7] |
Ma H C, Chen L H, Zhao J B, et al. Effect of prior austenite grain boundaries on corrosion fatigue behaviors of E690 high strength low alloy steel in simulated marine atmosphere. Mater Sci Eng A, 2020, 773: 138884 doi: 10.1016/j.msea.2019.138884
|
[8] |
Wang Z H, Wu J S, Li J, et al. Effects of niobium on the mechanical properties and corrosion behavior of simulated weld HAZ of HSLA steel. Metall Mater Trans A, 2018, 49(1): 187 doi: 10.1007/s11661-017-4391-4
|
[9] |
程遠鵬, 白羽, 李自力, 等. 集輸管道CO2/油/水環境中X65鋼的腐蝕特征. 工程科學學報, 2018, 40(5):594
Cheng Y P, Bai Y, Li Z L, et al. Corrosion characteristics of X65 steel in CO2/oil/water environment of gathering pipeline. Chin J Eng, 2018, 40(5): 594
|
[10] |
孫永偉, 鐘玉平, 王靈水, 等. 低合金高強度鋼的耐模擬工業大氣腐蝕行為研究. 中國腐蝕與防護學報, 2019, 39(3):274 doi: 10.11902/1005.4537.2018.129
Sun Y W, Zhong Y P, Wang L S, et al. Corrosion behavior of low-alloy high strength steels in a simulated common SO2-containing atmosphere. J Chin Soc Corros Prot, 2019, 39(3): 274 doi: 10.11902/1005.4537.2018.129
|
[11] |
Sarkar P P, Kumar P, Manna M K, et al. Microstructural influence on the electrochemical corrosion behavior of dual-phase steels in 3.5% NaCl solution. Mater Lett, 2005, 59(19-20): 2488 doi: 10.1016/j.matlet.2005.03.030
|
[12] |
Qiao Q Q, Lu L, Fan E D, et al. Effects of Nb on stress corrosion cracking of high-strength low-alloy steel in simulated seawater. Int J Hydrogen Energy, 2019, 44(51): 27962 doi: 10.1016/j.ijhydene.2019.08.259
|
[13] |
Zhang S Q, Fan E D, Wan J F, et al. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel. Corros Sci, 2018, 139: 83 doi: 10.1016/j.corsci.2018.04.041
|
[14] |
陳恒, 盧琳. 殘余應力對金屬材料局部腐蝕行為的影響. 工程科學學報, 2019, 41(7):929
Chen H, Lu L. Effect of residual stress on localized corrosion behavior of metallic materials. Chin J Eng, 2019, 41(7): 929
|
[15] |
Guo J, Yang S W, Shang C J, et al. Influence of carbon content and microstructure on corrosion behavior of low alloy steels in a Cl- containing environment. Corros Sci, 2009, 51(2): 242 doi: 10.1016/j.corsci.2008.10.025
|
[16] |
Schino A D, Barteri M, Kenny J M. Grain size dependence of mechanical, corrosion and tribological properties of high nitrogen stainless steels. J Mater Sci, 2003, 38(15): 3257 doi: 10.1023/A:1025181820252
|
[17] |
張峰, 陳惠芬, 柴鋒, 等. 夾雜物對Cr?Ni系高強度鋼耐蝕性能的影響. 鋼鐵研究學報, 2017, 29(11):945
Zhang F, Chen H F, Chai F, et al. Effect of inclusions on corrosion resistance of Cr?Ni high-strength steels. J Iron Steel Res, 2017, 29(11): 945
|
[18] |
Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment. Corros Sci, 2018, 138: 96 doi: 10.1016/j.corsci.2018.04.007
|
[19] |
Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros Sci, 2017, 129: 82 doi: 10.1016/j.corsci.2017.10.001
|
[20] |
American Society for Testing Material. ASTM G101-04(2010) Standard Guide for Estimating the Atmospheric Corrosion Resistance of Low Alloy Steels. Pennsylvania: American Society for Testing and Materials, 2010
|
[21] |
中華人民共和國國家質量監督檢驗總局. GB/T 4171—2008耐候結構鋼. 北京: 中國標準出版社, 2008
General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 4171—2008 Atmospheric Corrosion Resisting Structural Steel. Beijing: China Standards Press, 2008
|
[22] |
中華人民共和國國家質量監督檢驗總局. GB/T 714—2015橋梁用結構鋼. 北京: 中國標準出版社, 2015
General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 714—2015 Structural Steel for Bridge. Beijing: China Standards Press, 2015
|
[23] |
Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres. Corros Sci, 2017, 115: 135 doi: 10.1016/j.corsci.2016.11.016
|
[24] |
蘇宏藝, 魏世丞, 梁義, 等. 靜水壓與溶解氧耦合作用對低合金高強鋼腐蝕電化學行為的影響. 工程科學學報, 2019, 41(8):1029
Su H Y, Wei S C, Liang Y, et al. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel. Chin J Eng, 2019, 41(8): 1029
|
[25] |
Kamimura T, Stratmann M. The influence of chromium on the atmospheric corrosion of steel. Corros Sci, 2001, 43(3): 429 doi: 10.1016/S0010-938X(00)00098-6
|
[26] |
Liu C, Cheng X Q, Dai Z Y, et al. Synergistic effect of Al2O3 inclusion and pearlite on the localized corrosion evolution process of carbon steel in marine environment. Materials, 2018, 11(11): 2277 doi: 10.3390/ma11112277
|