<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
ZHAO Qi-yue, FAN Yi, FAN En-dian, ZHAO Bai-jie, HUANG Yun-hua, CHENG Xue-qun, LI Xiao-gang. Influence factors and corrosion resistance criterion of low-alloy structural steel[J]. Chinese Journal of Engineering, 2021, 43(2): 255-262. doi: 10.13374/j.issn2095-9389.2020.01.10.002
Citation: ZHAO Qi-yue, FAN Yi, FAN En-dian, ZHAO Bai-jie, HUANG Yun-hua, CHENG Xue-qun, LI Xiao-gang. Influence factors and corrosion resistance criterion of low-alloy structural steel[J]. Chinese Journal of Engineering, 2021, 43(2): 255-262. doi: 10.13374/j.issn2095-9389.2020.01.10.002

Influence factors and corrosion resistance criterion of low-alloy structural steel

doi: 10.13374/j.issn2095-9389.2020.01.10.002
More Information
  • Low-alloy engineering structural steel is widely used in many fields, because of its good mechanical and processing properties. The corrosion resistance of low-alloy engineering structural steel is related not only to chemical composition but also to microstructure, inclusions, grain size, and other factors. However, at present, the direct and fast criterion for evaluating the corrosion resistance of low-alloy structural steel, i.e., the corrosion resistance index I, in the ASTM Standard and China National Standards only involves the chemical composition of low-alloy structural steel and ignores the microstructure, inclusions, and grain size. In the literature on the corrosion resistance of low-alloy structural steel, the coupled effect of chemical composition and other material factors on corrosion resistance and the quantitative analysis of each factor have not been reported. Therefore, a new corrosion resistance index for low-alloy structural steel that includes more factors needs to be proposed. Through the neutral salt spray accelerated corrosion test of eight kinds of low-alloy engineering structural steels with similar composition and microstructure produced by different manufacturers or production lines, combined with the methods of composition test, microstructure analysis, corrosion product analysis, data statistics, and calculation fitting, a composite corrosion resistance index Y for low-alloy structural steel was proposed, and a quantitative index formula containing several factors, including chemical composition, inclusions, microstructure, and grain size, was established. Results show that the corrosion resistance of low-alloy structural steel is affected by the coupling of many material factors, not only the traditional corrosion resistance index I but also inclusions, microstructure, and grain size. The degree of influence is in the order of corrosion resistance index I determined by corrosion-resistant alloy elements, total inclusions, pearlite content, and grain size. The composite corrosion resistance index can be used as an effective criterion for the corrosion resistance of low-alloy structural steel and is of significance in engineering applications.

     

  • loading
  • [1]
    李曉剛. 耐蝕低合金結構鋼. 北京: 冶金工業出版社, 2017

    Li X G. Corrosion-resistant Low Alloy Steel. Beijing: Metallurgical Industry Press, 2017
    [2]
    Zhang S Q, Wan J F, Zhao Q Y, et al. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel. Corros Sci, 2020, 164: 108345 doi: 10.1016/j.corsci.2019.108345
    [3]
    Zhang D Z, Gao X H, Du Y, et al. Effect of microstructure refinement on hydrogen-induced damage behavior of low alloy high strength steel for flexible riser. Mater Sci Eng A, 2019, 765: 138278
    [4]
    李秀程, 李學達, 王學林, 等. 低合金鋼焊接熱影響區的微觀組織和韌性研究進展. 工程科學學報, 2017, 39(5):643

    Li X C, Li X D, Wang X L, et al. Research progress on microstructures and toughness of welding heat-affected zone in low-alloy steel. Chin J Eng, 2017, 39(5): 643
    [5]
    馬博, 彭艷, 劉云飛, 等. 低合金鋼Q345B動態再結晶動力學模型. 材料熱處理學報, 2010, 31(4):141

    Ma B, Peng Y, Liu Y F, et al. Dynamic recrystallization kinetics model of low-alloy steel Q345B. Trans Mater Heat Treat, 2010, 31(4): 141
    [6]
    殷勝, 朱紅丹. 屈服強度750 MPa低合金鋼高強度集裝箱用鋼的開發. 特殊鋼, 2019, 40(1):16 doi: 10.3969/j.issn.1003-8620.2019.01.005

    Yin S, Zhu H D. Development of yield strength 750 MPa HSLA steel for container. Spec Steel, 2019, 40(1): 16 doi: 10.3969/j.issn.1003-8620.2019.01.005
    [7]
    Ma H C, Chen L H, Zhao J B, et al. Effect of prior austenite grain boundaries on corrosion fatigue behaviors of E690 high strength low alloy steel in simulated marine atmosphere. Mater Sci Eng A, 2020, 773: 138884 doi: 10.1016/j.msea.2019.138884
    [8]
    Wang Z H, Wu J S, Li J, et al. Effects of niobium on the mechanical properties and corrosion behavior of simulated weld HAZ of HSLA steel. Metall Mater Trans A, 2018, 49(1): 187 doi: 10.1007/s11661-017-4391-4
    [9]
    程遠鵬, 白羽, 李自力, 等. 集輸管道CO2/油/水環境中X65鋼的腐蝕特征. 工程科學學報, 2018, 40(5):594

    Cheng Y P, Bai Y, Li Z L, et al. Corrosion characteristics of X65 steel in CO2/oil/water environment of gathering pipeline. Chin J Eng, 2018, 40(5): 594
    [10]
    孫永偉, 鐘玉平, 王靈水, 等. 低合金高強度鋼的耐模擬工業大氣腐蝕行為研究. 中國腐蝕與防護學報, 2019, 39(3):274 doi: 10.11902/1005.4537.2018.129

    Sun Y W, Zhong Y P, Wang L S, et al. Corrosion behavior of low-alloy high strength steels in a simulated common SO2-containing atmosphere. J Chin Soc Corros Prot, 2019, 39(3): 274 doi: 10.11902/1005.4537.2018.129
    [11]
    Sarkar P P, Kumar P, Manna M K, et al. Microstructural influence on the electrochemical corrosion behavior of dual-phase steels in 3.5% NaCl solution. Mater Lett, 2005, 59(19-20): 2488 doi: 10.1016/j.matlet.2005.03.030
    [12]
    Qiao Q Q, Lu L, Fan E D, et al. Effects of Nb on stress corrosion cracking of high-strength low-alloy steel in simulated seawater. Int J Hydrogen Energy, 2019, 44(51): 27962 doi: 10.1016/j.ijhydene.2019.08.259
    [13]
    Zhang S Q, Fan E D, Wan J F, et al. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel. Corros Sci, 2018, 139: 83 doi: 10.1016/j.corsci.2018.04.041
    [14]
    陳恒, 盧琳. 殘余應力對金屬材料局部腐蝕行為的影響. 工程科學學報, 2019, 41(7):929

    Chen H, Lu L. Effect of residual stress on localized corrosion behavior of metallic materials. Chin J Eng, 2019, 41(7): 929
    [15]
    Guo J, Yang S W, Shang C J, et al. Influence of carbon content and microstructure on corrosion behavior of low alloy steels in a Cl- containing environment. Corros Sci, 2009, 51(2): 242 doi: 10.1016/j.corsci.2008.10.025
    [16]
    Schino A D, Barteri M, Kenny J M. Grain size dependence of mechanical, corrosion and tribological properties of high nitrogen stainless steels. J Mater Sci, 2003, 38(15): 3257 doi: 10.1023/A:1025181820252
    [17]
    張峰, 陳惠芬, 柴鋒, 等. 夾雜物對Cr?Ni系高強度鋼耐蝕性能的影響. 鋼鐵研究學報, 2017, 29(11):945

    Zhang F, Chen H F, Chai F, et al. Effect of inclusions on corrosion resistance of Cr?Ni high-strength steels. J Iron Steel Res, 2017, 29(11): 945
    [18]
    Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment. Corros Sci, 2018, 138: 96 doi: 10.1016/j.corsci.2018.04.007
    [19]
    Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros Sci, 2017, 129: 82 doi: 10.1016/j.corsci.2017.10.001
    [20]
    American Society for Testing Material. ASTM G101-04(2010) Standard Guide for Estimating the Atmospheric Corrosion Resistance of Low Alloy Steels. Pennsylvania: American Society for Testing and Materials, 2010
    [21]
    中華人民共和國國家質量監督檢驗總局. GB/T 4171—2008耐候結構鋼. 北京: 中國標準出版社, 2008

    General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 4171—2008 Atmospheric Corrosion Resisting Structural Steel. Beijing: China Standards Press, 2008
    [22]
    中華人民共和國國家質量監督檢驗總局. GB/T 714—2015橋梁用結構鋼. 北京: 中國標準出版社, 2015

    General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 714—2015 Structural Steel for Bridge. Beijing: China Standards Press, 2015
    [23]
    Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres. Corros Sci, 2017, 115: 135 doi: 10.1016/j.corsci.2016.11.016
    [24]
    蘇宏藝, 魏世丞, 梁義, 等. 靜水壓與溶解氧耦合作用對低合金高強鋼腐蝕電化學行為的影響. 工程科學學報, 2019, 41(8):1029

    Su H Y, Wei S C, Liang Y, et al. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel. Chin J Eng, 2019, 41(8): 1029
    [25]
    Kamimura T, Stratmann M. The influence of chromium on the atmospheric corrosion of steel. Corros Sci, 2001, 43(3): 429 doi: 10.1016/S0010-938X(00)00098-6
    [26]
    Liu C, Cheng X Q, Dai Z Y, et al. Synergistic effect of Al2O3 inclusion and pearlite on the localized corrosion evolution process of carbon steel in marine environment. Materials, 2018, 11(11): 2277 doi: 10.3390/ma11112277
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article views (2061) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频