<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
WANG Hong-jiang, WANG Xiao-lin, KOU Yun-peng, WU Zai-hai, PENG Qing-song. Loop test study on the high-concentration cemented filling of full tailings[J]. Chinese Journal of Engineering, 2021, 43(2): 215-222. doi: 10.13374/j.issn2095-9389.2020.01.09.002
Citation: WANG Hong-jiang, WANG Xiao-lin, KOU Yun-peng, WU Zai-hai, PENG Qing-song. Loop test study on the high-concentration cemented filling of full tailings[J]. Chinese Journal of Engineering, 2021, 43(2): 215-222. doi: 10.13374/j.issn2095-9389.2020.01.09.002

Loop test study on the high-concentration cemented filling of full tailings

doi: 10.13374/j.issn2095-9389.2020.01.09.002
More Information
  • Corresponding author: E-mail: kouyunpeng@126.com
  • Received Date: 2020-01-09
  • Publish Date: 2021-02-26
  • The high-concentration slurry prepared from full tailings used for mine backfilling can effectively eliminate the disasters caused by underground voids and tailing ponds. Using pipelines to transport filling slurry is the most efficient way, and the pipe resistance is one of the most important parameters. Presently, the loop test method for studying the pipe transportation parameters of filling slurry is closest to engineering reality. To determine the influence of the cement-sand ratio, concentration, and flow velocity of the high-concentration filling slurry prepared from full tailings on the pipe resistance and predict the resistance of industrial filling pipelines, pilot-scale loop tests were performed. A pipe resistance prediction model was established based on the relationship between the shear stress and the shear rate at the pipe wall. The gray correlation method was used to analyze the influence of various factors on the pipe resistance, and the rheological parameters of filling slurry were obtained by linear regression. The results show that the pipe resistance is most sensitive to the mass concentration of filling slurry and increases quadratically. The flow velocity of filling slurry has the second-greatest effect on pipe resistance, and the resistance increases linearly with flow velocity in laminar flow. The cement-sand ratio of filling slurry has a dual effect on the pipe resistance. When the cement-sand ratio is less than 1∶8, the cohesion effect of the cementing material is dominant and increases the pipe resistance. On the contrary, the lubrication effect of the cementing material is dominant and reduces the pipe resistance. The rheological parameters of filling slurry obtained by the loop test are much smaller than those obtained by the rheometer, and the loop test method is more reliable. The error of the pipe resistance prediction model is within 10%.

     

  • loading
  • [1]
    王昆, 楊鵬, Karen Hudson-Edwards, 等. 尾礦庫潰壩災害防控現狀及發展. 工程科學學報, 2018, 40(5):526

    Wang K, Yang P, Karen H E, et al. Status and development for the prevention and management of tailings dam failure accidents. Chin J Eng, 2018, 40(5): 526
    [2]
    劉曉輝, 王國立, 趙占斌, 等. 結構流充填料漿環管試驗及其阻力特性研究. 中國鉬業, 2016, 40(5):20

    Liu X H, Wang G L, Zhao Z B, et al. Study on the flow resistance characteristics of structure fluid backfilling slurry based on loop pipe testing. China Molybdenum Ind, 2016, 40(5): 20
    [3]
    楊超, 郭利杰, 張林, 等. 銅尾礦流變特性與管道輸送阻力計算. 工程科學學報, 2017, 39(5):663

    Yang C, Guo L J, Zhang L, et al. Study of the rheological characteristics of copper tailings and calculation of resistance in pipeline transportation. Chin J Eng, 2017, 39(5): 663
    [4]
    楊志強, 王永前, 高謙, 等. 金川膏體管道輸送特性環管試驗與減阻技術. 礦冶工程, 2016, 36(5):22 doi: 10.3969/j.issn.0253-6099.2016.05.006

    Yang Z Q, Wang Y Q, Gao Q, et al. Pipe-loop test for transportation characteristics of paste in Jinchuan mine and corresponding drag reduction technology. Min Metall Eng, 2016, 36(5): 22 doi: 10.3969/j.issn.0253-6099.2016.05.006
    [5]
    Wu A X, Ruan Z E, Wang Y M, et al. Simulation of long-distance pipeline transportation properties of whole-tailings paste with high sliming. J Cent South Univ, 2018, 25(1): 141 doi: 10.1007/s11771-018-3724-9
    [6]
    王少勇, 吳愛祥, 尹升華, 等. 膏體料漿管道輸送壓力損失的影響因素. 工程科學學報, 2015, 37(1):7

    Wang S Y, Wu A X, Yin S H, et al. Influence factors of pressure loss in pipeline transportation of paste slurry. Chin J Eng, 2015, 37(1): 7
    [7]
    李俊, 肖崇春, 姜寄, 等. 泵送膏體觸變特性對管道阻力的影響. 中國礦業, 2017, 26(2):283

    Li J, Xiao C C, Jiang J, et al. Thixotropic properties of paste pumping effect on pipeline resistance. China Min Mag, 2017, 26(2): 283
    [8]
    劉曉輝. 膏體尾礦流變行為的宏細觀分析及其測定方法. 金屬礦山, 2018(5):7

    Liu X H. Macro-micro analysis and test method of rheological behavior of paste tailings. Met Mine, 2018(5): 7
    [9]
    劉曉輝, 吳愛祥, 姚建, 等. 膏體尾礦管內滑移流動阻力特性及其近似計算方法. 中國有色金屬學報, 2019, 29(10):2403

    Liu X H, Wu A X, Yao J, et al. Resistance characteristic and approximate calculation of paste tailings slip flow inside pipe. Chin J Nonferrous Met, 2019, 29(10): 2403
    [10]
    陳秋松, 張欽禮, 王新民, 等. 全尾砂似膏體管輸水力坡度計算模型研究. 中國礦業大學學報, 2016, 45(5):901

    Chen Q S, Zhang Q L, Wang X M, et al. Pipeline hydraulic gradient model of paste-like unclassified tailings backfill slurry. J China Univ Min Technol, 2016, 45(5): 901
    [11]
    Steward N R, Allen G, Tiedermann K. Paste backfill reticulation optimisation using high shear mixing at DeGrussa Mine // Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings. Perth, 2019: 411
    [12]
    Chen D D, Jiang X G, Lv S, et al. Rheological properties and stability of lignite washery tailing suspensions. Fuel, 2015, 141: 214 doi: 10.1016/j.fuel.2014.10.067
    [13]
    Boger D V. Rheology of slurries and environmental impacts in the mining industry. Ann Rev Chem Biomol Eng, 2013, 4: 239 doi: 10.1146/annurev-chembioeng-061312-103347
    [14]
    Senapati P K, Mishra B K. Feasibility studies on pipeline disposal of concentrated copper tailings slurry for waste minimization. J Inst Eng India, 2017, 98(3): 277
    [15]
    Bharathan B, McGuinness M, Kuhar S, et al. Pressure loss and friction factor in non-Newtonian mine paste backfill: Modelling, loop test and mine field data. Powder Technol, 2019, 344: 443 doi: 10.1016/j.powtec.2018.12.029
    [16]
    侯運炳, 張興, 李攀, 等. 凍融循環對全尾砂固結體力學性能影響及無損檢測研究. 工程科學學報, 2019, 41(11):1433

    Hou Y B, Zhang X, Li P, et al. Mechanical properties and nondestructive testing of cemented mass of unclassified tailings under freeze-thaw cycles. Chin J Eng, 2019, 41(11): 1433
    [17]
    李亮, 張柬, Hassani Ferri, 等. 膏體尾礦屈服應力的塌落度試驗研究. 金屬礦山, 2017(1):30 doi: 10.3969/j.issn.1001-1250.2017.01.007

    Li L, Zhang J, Hassani F, et al. Slump tests for yield stress of paste tailings. Met Mine, 2017(1): 30 doi: 10.3969/j.issn.1001-1250.2017.01.007
    [18]
    李夕兵, 劉冰, 姚金蕊, 等. 全磷廢料綠色充填理論與實踐. 中國有色金屬學報, 2018, 28(9):1845

    Li X B, Liu B, Yao J R, et al. Theory and practice of green mine backfill with whole phosphate waste. Chin J Nonferrous Met, 2018, 28(9): 1845
    [19]
    程海勇, 吳順川, 吳愛祥, 等. 基于膏體穩定系數的級配表征及屈服應力預測. 工程科學學報, 2018, 40(10):1168

    Cheng H Y, Wu S C, Wu A X, et al. Grading characterization and yield stress prediction based on paste stability coefficient. Chin J Eng, 2018, 40(10): 1168
    [20]
    Pullum L, Boger D V, Sofra F. Hydraulic mineral waste transport and storage. Ann Rev Fluid Mech, 2018, 50: 157 doi: 10.1146/annurev-fluid-122316-045027
    [21]
    Cruz N, Forster J, Bobicki E R. Slurry rheology in mineral processing unit operations: A critical review. Can J Chem Eng, 2019, 97(7): 2102 doi: 10.1002/cjce.23476
    [22]
    王少勇, 吳愛祥, 阮竹恩, 等. 基于環管實驗的膏體流變特性及影響因素. 中南大學學報(自然科學版), 2018, 49(10):2519 doi: 10.11817/j.issn.1672-7207.2018.10.019

    Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Cent South Univ Sci Technol, 2018, 49(10): 2519 doi: 10.11817/j.issn.1672-7207.2018.10.019
    [23]
    楊清平, 王貽明, 王勇, 等. 謙比希銅礦膏體充填環管實驗研究. 采礦技術, 2016, 16(5):21 doi: 10.3969/j.issn.1671-2900.2016.05.008

    Yang Q P, Wang Y M, Wang Y, et al. Experimental study on paste filling loop of Chambisch copper mine. Min Technol, 2016, 16(5): 21 doi: 10.3969/j.issn.1671-2900.2016.05.008
    [24]
    任紅崗, 譚卓英, 王海軍. 基于OED-GRA評價模型的采場巖體參數敏感性分析. 有色金屬(礦山部分), 2017, 69(1):63

    Ren H G, Tan Z Y, Wang H J. Sensitivity analysis of rockmass parameters in stope based on the OED-GRA evaluation model. Nonferrous Met (Mine Sect), 2017, 69(1): 63
    [25]
    Qiu J P, Yang L, Sun X G, et al. Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill. Minerals, 2017, 7(4): 58 doi: 10.3390/min7040058
    [26]
    Bauer E, de Sousa J G G, Guimar?es A, et al. Study of the laboratory Vane test on mortars. Build Environ, 2007, 42(1): 86 doi: 10.1016/j.buildenv.2005.08.016
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (1759) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频