Citation: | LU Jian-hao, XUE Shan-shan, LIAN Fang. Research progress of MOFs-derived materials as the electrode for lithium–ion batteries — a short review[J]. Chinese Journal of Engineering, 2020, 42(5): 527-539. doi: 10.13374/j.issn2095-9389.2019.12.29.001 |
[1] |
Auvergniot J, Cassel A, Ledeuil J B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem Mater, 2017, 29(9): 3883 doi: 10.1021/acs.chemmater.6b04990
|
[2] |
Gong Y, Zhang J N, Jiang L W, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery. J Am Chem Soc, 2017, 139(12): 4274 doi: 10.1021/jacs.6b13344
|
[3] |
Konarov A, Myung S T, Sun Y K. Cathode materials for future electric vehicles and energy storage systems. ACS Energy Lett, 2017, 2(3): 703 doi: 10.1021/acsenergylett.7b00130
|
[4] |
Tron A, Jo Y N, Oh S H, et al. Surface modification of the LiFePO4 cathode for the aqueous rechargeable lithium ion battery. ACS Appl Mater Interfaces, 2017, 9(14): 12391 doi: 10.1021/acsami.6b16675
|
[5] |
Capasso C, Veneri O. Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles. Appl Energy, 2014, 136: 921 doi: 10.1016/j.apenergy.2014.04.013
|
[6] |
Gao X P, Yang H X. Multi-electron reaction materials for high energy density batteries. Energy Environ Sci, 2010, 3(2): 174 doi: 10.1039/B916098A
|
[7] |
Bruce P G, Freunberger S A, Hardwick L J, et al. Li?O2 and Li?S batteries with high energy storage. Nat Mater, 2012, 11: 19 doi: 10.1038/nmat3191
|
[8] |
Zhu Z Q, Wang S W, Du J, et al. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett, 2014, 14(1): 153 doi: 10.1021/nl403631h
|
[9] |
Sacci R L, Lehmann M L, Diallo S O, et al. Lithium transport in an amorphous LixSi anode investigated by quasi-elastic neutron scattering. J Phys Chem C, 2017, 121(21): 11083 doi: 10.1021/acs.jpcc.7b01133
|
[10] |
Lü X X, Deng J J, Wang B Q, et al. γ-Fe2O3@ CNTs anode materials for lithium ion batteries investigated by electron energy loss spectroscopy. Chem Mater, 2017, 29(8): 3499 doi: 10.1021/acs.chemmater.6b05356
|
[11] |
Jiang T C, Bu F X, Feng X X, et al. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano, 2017, 11(5): 5140 doi: 10.1021/acsnano.7b02198
|
[12] |
Zhou J W, Wang B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem Soc Rev, 2017, 46(22): 6927 doi: 10.1039/C7CS00283A
|
[13] |
Howarth A J, Liu Y Y, Li P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat Rev Mater, 2016, 1: 15018 doi: 10.1038/natrevmats.2015.18
|
[14] |
Hu L, Chen Q. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale, 2014, 6(3): 1236 doi: 10.1039/C3NR05192G
|
[15] |
Chen L Y, Luque R, Li Y W. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem Soc Rev, 2017, 46(15): 4614 doi: 10.1039/C6CS00537C
|
[16] |
Kim D, Coskun A. Template-directed approach towards the realization of ordered heterogeneity in bimetallic metal-organic frameworks. Angew Chem Int Ed Engl, 2017, 56(18): 5071 doi: 10.1002/anie.201702501
|
[17] |
An T C, Wang Y H, Tang J, et al. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage. J Colloid Interface Sci, 2015, 445: 320 doi: 10.1016/j.jcis.2015.01.012
|
[18] |
Weston M H, Delaquil A A, Sarjeant A A, et al. Tuning the hydrophobicity of zinc dipyridyl paddlewheel metal-organic frameworks for selective sorption. Cryst Growth Des, 2013, 13(7): 2938 doi: 10.1021/cg400342m
|
[19] |
Kirchon A, Feng L, Drake H F, et al. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev, 2018, 47(23): 8611 doi: 10.1039/C8CS00688A
|
[20] |
Karagiaridi O, Lalonde M B, Bury W, et al. Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J Am Chem Soc, 2012, 134(45): 18790 doi: 10.1021/ja308786r
|
[21] |
Feng L, Yuan S, Zhang L L, et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J Am Chem Soc, 2018, 140(6): 2363 doi: 10.1021/jacs.7b12916
|
[22] |
Yec C C, Zeng H C. Synthesis of complex nanomaterials via Ostwald ripening. J Mater Chem A, 2014, 2(14): 4843 doi: 10.1039/C3TA14203E
|
[23] |
Cui Y J, Li B, He H J, et al. Metal-organic frameworks as platforms for functional materials. Acc Chem Res, 2016, 49(3): 483 doi: 10.1021/acs.accounts.5b00530
|
[24] |
Wang S Z, McGuirk C M, d'Aquino A, et al. Metal-organic framework nanoparticles. Adv Mater, 2018, 30(37): 1800202 doi: 10.1002/adma.201800202
|
[25] |
LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc, 1950, 72(11): 4847 doi: 10.1021/ja01167a001
|
[26] |
Banerjee A, Upadhyay K K, Puthusseri D, et al. MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs). Nanoscale, 2014, 6(8): 4387 doi: 10.1039/c4nr00025k
|
[27] |
Fang G Z, Zhou J, Liang C W, et al. MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy, 2016, 26: 57 doi: 10.1016/j.nanoen.2016.05.009
|
[28] |
Salunkhe R R, Kaneti Y V, Yamauchi Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano, 2017, 11(6): 5293 doi: 10.1021/acsnano.7b02796
|
[29] |
Liu Y S, Shen H B, Jiang H, et al. ZIF-derived graphene coated/Co9S8 nanoparticles embedded in nitrogen doped porous carbon polyhedrons as advanced catalysts for oxygen reduction reaction. Int J Hydrogen Energy, 2017, 42(18): 12978 doi: 10.1016/j.ijhydene.2017.04.050
|
[30] |
Zhang Y F, Pan A Q, Wang Y P, et al. Dodecahedron-shaped porous vanadium oxide and carbon composite for high-rate lithium ion batteries. ACS Appl Mater Interfaces, 2016, 8(27): 17303 doi: 10.1021/acsami.6b04866
|
[31] |
Xie Z Q, Xu W W, Cui X D, et al. Recent progress in metal-organic frameworks and their derived nanostructures for energy and environmental applications. ChemSusChem, 2017, 10(8): 1645 doi: 10.1002/cssc.201601855
|
[32] |
Zhang W, Jiang X F, Zhao Y Y, et al. Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chem Sci, 2017, 8(5): 3538 doi: 10.1039/C6SC04903F
|
[33] |
Hu Z W, Zhang Z P, Li Z L, et al. One-step conversion from core-shell metal-organic framework materials to cobalt and nitrogen codoped carbon nanopolyhedra with hierarchically porous structure for highly efficient oxygen reduction. ACS Appl Mater Interfaces, 2017, 9(19): 16109 doi: 10.1021/acsami.7b00736
|
[34] |
Jiang Y, Liu H Q, Tan X H, et al. Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries. ACS Appl Mater Interfaces, 2017, 9(30): 25239 doi: 10.1021/acsami.7b04432
|
[35] |
Leyssale J M, Vignoles G L. Molecular dynamics evidences of the full graphitization of a nanodiamond annealed at 1500 K. Chem Phys Lett, 2008, 454(4-6): 299 doi: 10.1016/j.cplett.2008.02.025
|
[36] |
Zheng F C, Yang Y, Chen Q W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun, 2014, 5: 5261 doi: 10.1038/ncomms6261
|
[37] |
Li A, Tong Y, Cao B, et al. MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Sci Rep, 2017, 7: 40574 doi: 10.1038/srep40574
|
[38] |
Guo Y Y, Zeng X Q, Zhang Y, et al. Sn nanoparticles encapsulated in 3D nanoporous carbon derived from a metal-organic framework for anode material in lithium-ion batteries. ACS Appl Mater Interfaces, 2017, 9(20): 17172 doi: 10.1021/acsami.7b04561
|
[39] |
Zhang P, Sun F, Xiang Z H, et al. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ Sci, 2014, 7(1): 442 doi: 10.1039/C3EE42799D
|
[40] |
Jiang H L, Liu B, Lan Y Q, et al. From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc, 2011, 133(31): 11854 doi: 10.1021/ja203184k
|
[41] |
Su P P, Xiao H, Zhao J, et al. Nitrogen-doped carbon nanotubes derived from Zn-Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species. Chem Sci, 2013, 4(7): 2941 doi: 10.1039/c3sc51052b
|
[42] |
Lu J H, Lian F, Guan L L, et al. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages. J Mater Chem A, 2019, 7(3): 991 doi: 10.1039/C8TA09955C
|
[43] |
Tao S, Huang W F, Xie H, et al. Formation of graphene-encapsulated CoS2 hybrid composites with hierarchical structures for high-performance lithium-ion batteries. RSC Adv, 2017, 7(63): 39427
|
[44] |
Yang W F, Wang J W, Ma W S, et al. Free-standing CuO nanoflake arrays coated Cu foam for advanced lithium ion battery anodes. J Power Sources, 2016, 333: 88 doi: 10.1016/j.jpowsour.2016.09.154
|
[45] |
Hua X, Liu Z, Fischer M G, et al. Lithiation thermodynamics and kinetics of the TiO2(B) nanoparticles. J Am Chem Soc, 2017, 139(38): 13330 doi: 10.1021/jacs.7b05228
|
[46] |
Xu X D, Cao R G, Jeong S, et al. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett, 2012, 12(9): 4988 doi: 10.1021/nl302618s
|
[47] |
Xia G L, Su J W, Li M S, et al. A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity. J Mater Chem A, 2017, 5(21): 10321 doi: 10.1039/C7TA02600E
|
[48] |
Shao J, Wan Z M, Liu H M, et al. Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J Mater Chem A, 2014, 2(31): 12194 doi: 10.1039/C4TA01966K
|
[49] |
Zheng F C, He M N, Yang Y, et al. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. Nanoscale, 2015, 7(8): 3410 doi: 10.1039/C4NR06321J
|
[50] |
Wang B X, Wang Z Q, Cui Y J, et al. Cr2O3@TiO2 yolk/shell octahedrons derived from a metal-organic framework for high-performance lithium-ion batteries. Microporous Mesoporous Mater, 2015, 203: 86 doi: 10.1016/j.micromeso.2014.10.026
|
[51] |
Tan Y L, Zhu K, Li D, et al. N-doped graphene/Fe-Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem Eng J, 2014, 258: 93 doi: 10.1016/j.cej.2014.07.066
|
[52] |
Shiva K, Jayaramulu K, Rajendra H B, et al. In-situ stabilization of tin nanoparticles in porous carbon matrix derived from metal organic framework: high capacity and high rate capability anodes for lithium-ion batteries. Zeitschrift für anorganische und allgemeine Chemie, 2014, 640(6): 1115 doi: 10.1002/zaac.201300621
|
[53] |
Guo H, Li T, Chen W, et al. General design of hollow porous CoFe2O4 nanocubes from metal-organic frameworks with extraordinary lithium storage. Nanoscale, 2014, 6(24): 15168 doi: 10.1039/C4NR04422C
|
[54] |
Huang G, Zhang F F, Zhang L L, et al. Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A, 2014, 2(21): 8048 doi: 10.1039/C4TA00200H
|
[55] |
Zheng F C, Zhu D Q, Shi X H, et al. Metal-organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. J Mater Chem A, 2015, 3(6): 2815 doi: 10.1039/C4TA06150K
|
[56] |
Xu W W, Xie Z Q, Wang Z, et al. Interwoven heterostructural Co3O4-carbon@FeOOH hollow polyhedrons with improved electrochemical performance. J Mater Chem A, 2016, 4(48): 19011 doi: 10.1039/C6TA08217C
|
[57] |
Fang G Z, Wu Z X, Zhou J, et al. Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv Energy Mater, 2018, 8(19): 1703155 doi: 10.1002/aenm.201703155
|
[58] |
Wang X, Chen Y, Fang Y J, et al. Synthesis of cobalt sulfide multi-shelled nanoboxes with precisely controlled two to five shells for sodium-ion batteries. Angew Chem Int Ed, 2019, 58(9): 2675 doi: 10.1002/anie.201812387
|
[59] |
Zou F, Chen Y M, Liu K W, et al. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano, 2015, 10(1): 377
|
[60] |
Ding Y C, Hu L H, He D C, et al. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery. Chem Eng J, 2020, 380: 122489 doi: 10.1016/j.cej.2019.122489
|
[61] |
Hu H, Zhang J T, Guan B Y, et al. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew Chem, 2016, 128(33): 9666 doi: 10.1002/ange.201603852
|
[62] |
Wang J L, Wang J W, Han L F, et al. Fabrication of an anode composed of a N, S co-doped carbon nanotube hollow architecture with CoS2 confined within: toward Li and Na storage. Nanoscale, 2019, 11(43): 20996 doi: 10.1039/C9NR07767G
|
[63] |
Zhang L, Wu H B, Lou X W. MOFs-derived general formation of hollow structures with high complexity. J Am Chem Soc, 2013, 135(29): 10664 doi: 10.1021/ja401727n
|
[64] |
Zhang J T, Hu H, Li Z, et al. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew Chem Int Ed, 2016, 55(12): 3982 doi: 10.1002/anie.201511632
|
[65] |
Zhang L, Wu H B, Madhavi S, et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc, 2012, 134(42): 17388 doi: 10.1021/ja307475c
|
[66] |
Yu L, Yang J F, Lou X W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew Chem Int Ed, 2016, 55(43): 13422 doi: 10.1002/anie.201606776
|
[67] |
Li P H, Yang Y, Gong S, et al. Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Res, 2019, 12(9): 2218 doi: 10.1007/s12274-018-2250-2
|
[68] |
Guo W X, Sun W W, Lü L P, et al. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano, 2017, 11(4): 4198 doi: 10.1021/acsnano.7b01152
|
[69] |
Wu R B, Wang D P, Rui X H, et al. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv Mater, 2015, 27(19): 3038 doi: 10.1002/adma.201500783
|
[70] |
Zhang H, Wang Y S, Zhao W Q, et al. MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for Lithium-ion battery anodes. ACS Appl Mater Interfaces, 2017, 9(43): 37813 doi: 10.1021/acsami.7b12095
|
[71] |
Xu X L, Wang H, Liu J B, et al. The applications of zeolitic imidazolate framework-8 in electrical energy storage devices: a review. J Mater Sci Mater Electron, 2017, 28: 7532 doi: 10.1007/s10854-017-6485-6
|
[72] |
Ghimbeu C M, Górka J, Simone V, et al. Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy, 2018, 44: 327 doi: 10.1016/j.nanoen.2017.12.013
|
[73] |
Sathiya M, Rousse G, Ramesha K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater, 2013, 12: 827 doi: 10.1038/nmat3699
|
[74] |
Nayak P K, Erickson E M, Schipper F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn- rich cathode materials for Li-ion batteries. Adv Energy Mater, 2018, 8(8): 1702397 doi: 10.1002/aenm.201702397
|
[75] |
Li W, Liu J, Zhao D Y. Mesoporous materials for energy conversion and storage devices. Nat Rev Mater, 2016, 1: 16023 doi: 10.1038/natrevmats.2016.23
|