Citation: | JIAO Han-dong, WANG Ming-yong, SONG Wei-li, JIAO Shu-qiang. Influence of Ru doping on the conductivity of LaCrO3 ceramic prepared by SPS and the feasibility of the doped ceramic for an inert anode of molten salt electrolysis[J]. Chinese Journal of Engineering, 2020, 42(10): 1335-1342. doi: 10.13374/j.issn2095-9389.2019.12.25.005 |
[1] |
Hodes G. Perovskite-based solar cells. Science, 2013, 342(6156): 317 doi: 10.1126/science.1245473
|
[2] |
Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature, 1992, 358(6382): 136 doi: 10.1038/358136a0
|
[3] |
Maeno Y, Hashimoto H, Yoshida K, et al. Superconductivity in a layered perovskite without copper. Nature, 1994, 372(6506): 532 doi: 10.1038/372532a0
|
[4] |
Sfeir J. LaCrO3-based anodes: stability considerations. J Power Sources, 2003, 118(1-2): 276 doi: 10.1016/S0378-7753(03)00099-5
|
[5] |
Zhou J S, Alonso J A, Muonz A, et al. Magnetic structure of LaCrO3 perovskite under high pressure from in situ neutron diffraction. Phys Rev Lett, 2011, 106(5): 057201 doi: 10.1103/PhysRevLett.106.057201
|
[6] |
Hayashi H, Watanabe M, Inaba H. Measurement of thermal expansion coefficient of LaCrO3. Thermochim Acta, 2000, 359(1): 77 doi: 10.1016/S0040-6031(00)00507-4
|
[7] |
Ding X F, Liu Y J, Gao L, et al. Synthesis and characterization of doped LaCrO3 perovskite prepared by EDTA-citrate complexing method. J Alloys Compd, 2008, 458(1-2): 346 doi: 10.1016/j.jallcom.2007.03.110
|
[8] |
Jiang Y Z, Gao J F, Liu M F, et al. Synthesis of LaCrO3 films using spray pyrolysis technique. Mater Lett, 2007, 61(8-9): 1908 doi: 10.1016/j.matlet.2006.07.153
|
[9] |
Situmeang R, Supryanto R, Kahar L N A, et al. Characteristics of nano-size LaCrO3 prepared through sol-gel route using pectin as emulsifying agent. Orient J Chem, 2017, 33(4): 1705 doi: 10.13005/ojc/330415
|
[10] |
Wang S, Huang K K, Hou C M, et al. Low temperature hydrothermal synthesis, structure and magnetic properties of RECrO3 (RE= La, Pr, Nd, Sm). Dalton Trans, 2015, 44(39): 17201 doi: 10.1039/C5DT02342D
|
[11] |
Hilpert K, Steinbrech R W, Boroomand F, et al. Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). J Eur Ceram Soc, 2003, 23(16): 3009 doi: 10.1016/S0955-2219(03)00097-9
|
[12] |
Mori M, Hiei Y, Sammes N M. Sintering behavior of Ca-or Sr-doped LaCrO3 perovskites including second phase of AECrO4 (AE= Sr, Ca) in air. Solid State Ionics, 2000, 135(1-4): 743 doi: 10.1016/S0167-2738(00)00372-6
|
[13] |
Duran P, Tartaj J, Capel F, et al. Formation, sintering and thermal expansion behaviour of Sr-and Mg-doped LaCrO3 as SOFC interconnector prepared by the ethylene glycol polymerized complex solution synthesis method. J Eur Ceram Soc, 2004, 24(9): 2619 doi: 10.1016/j.jeurceramsoc.2003.09.016
|
[14] |
Liu M F, Zhao L, Dong D H, et al. High sintering ability and electrical conductivity of Zn doped La(Ca)CrO3 based interconnect ceramics for SOFCs. J Power Sources, 2008, 177(2): 451 doi: 10.1016/j.jpowsour.2007.11.058
|
[15] |
Oishi M, Yashiro K, Hong J O, et al. Oxygen nonstoichiometry of B-site doped LaCrO3. Solid State Ionics, 2007, 178(3-4): 307 doi: 10.1016/j.ssi.2006.12.018
|
[16] |
Corrêa H P S, Paiva-Santos C O, Setz L F, et al. Crystal structure refinement of Co-doped lanthanum chromites. Powder Diffract, 2008, 23(Suppl1): S18
|
[17] |
Suda E, Pacaud B, Seguelong T, et al. Sintering characteristics and thermal expansion behavior of Li-doped lanthanum chromite perovskites depending upon preparation method and Sr doping. Solid State Ionics, 2002, 151(1-4): 335 doi: 10.1016/S0167-2738(02)00533-7
|
[18] |
Mori M, Sammes N M. Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method. Solid State Ionics, 2002, 146(3-4): 301 doi: 10.1016/S0167-2738(01)01020-7
|
[19] |
Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407(6802): 361 doi: 10.1038/35030069
|
[20] |
Jiao S Q, Fray D J. Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts. Metall Mater Trans B, 2010, 41(1): 74 doi: 10.1007/s11663-009-9281-8
|
[21] |
Yin H, Mao X, Tang D, et al. Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy Environ Sci, 2013, 6(5): 1538 doi: 10.1039/c3ee24132g
|
[22] |
Abdelkader A M, Kilby K T, Cox A, et al. DC voltammetry of electro-deoxidation of solid oxides. Chem Rev, 2013, 113(5): 2863 doi: 10.1021/cr200305x
|
[23] |
Wang S B, Ge J B, Hu Y J, et al. Electrochemical reduction of iron oxide in molten sodium hydroxide based on a Ni0.94Si0.04Al0.02 metallic inert anode. Electrochim Acta, 2013, 87: 148 doi: 10.1016/j.electacta.2012.09.044
|
[24] |
Mamedov V. Spark plasma sintering as advanced PM sintering method. Powder Metall, 2002, 45(4): 322 doi: 10.1179/003258902225007041
|
[25] |
Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater, 2014, 16(7): 830 doi: 10.1002/adem.201300409
|
[26] |
Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci, 2006, 41(3): 763 doi: 10.1007/s10853-006-6555-2
|
[27] |
Jiao H D, Wang J X, Ge J B, et al. Fabrication, characterization and electrical conductivity of Ru-doped LaCrO3 dense perovskites. Solid State Commun, 2016, 231-232: 53 doi: 10.1016/j.ssc.2016.02.003
|
[28] |
El-Sheikh S M, Khedr T M, Zhang G S, et al. Tailored synthesis of anatase-brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV-Vis light. Chem Eng J, 2017, 310: 428 doi: 10.1016/j.cej.2016.05.007
|