<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
QU Ya-song, YU Xiao-hua, XIE Gang, SHI Chun-yang, YANG Ya-gang, LI Yong-gang. Electrochemical properties of Zn–In LDHs in Zn–Ni secondary batteries[J]. Chinese Journal of Engineering, 2020, 42(12): 1624-1630. doi: 10.13374/j.issn2095-9389.2019.12.25.002
Citation: QU Ya-song, YU Xiao-hua, XIE Gang, SHI Chun-yang, YANG Ya-gang, LI Yong-gang. Electrochemical properties of Zn–In LDHs in Zn–Ni secondary batteries[J]. Chinese Journal of Engineering, 2020, 42(12): 1624-1630. doi: 10.13374/j.issn2095-9389.2019.12.25.002

Electrochemical properties of Zn–In LDHs in Zn–Ni secondary batteries

doi: 10.13374/j.issn2095-9389.2019.12.25.002
More Information
  • Although zinc–nickel (Zn–Ni) secondary batteries have numerous advantages, these have not been widely used in practice. The main reason is that problems such as the formation of dendritic zinc, corrosion, and passivation are encountered in the use of zinc anode. These problems restrict the development of Zn–Ni secondary battery using zinc electrode. To improve the electrochemical properties of zinc anode, researchers are constantly looking for new materials to be applied to Zn–Ni secondary batteries. Recently, many studies on the modification of zinc oxide and the electrochemical properties of calcium zincate have been conducted. The improvement measures can effectively enhance the corrosion resistance and cycle stability of Zn–Ni secondary batteries, but the improvements are not up to expectations. Therefore, researchers have now focused their attention on the research and development of new materials. The unique properties of hydrotalcite have attracted the attention of researchers. Hydrotalcite has shown excellent performance in electrocatalysis, medicine, nanofillers, and other functional fields. Moreover, because hydrotalcite has high stability in alkaline solution, hydrotalcite may become a new material for alkaline batteries. Presently, hydrotalcite, as a new kind of B-type material, has been used in alkaline secondary batteries; the performance of these batteries is excellent. The introduction of Zn–Al LDHs effectively improves the electrochemical properties of Zn–Ni secondary batteries. Therefore, this study proposes the application of Zn–In LDHs to Zn–Ni secondary batteries for the first time to analyze its electrochemical properties. Zn–In LDHs were prepared via the hydrothermal method and used as a new anode material for Zn–Ni secondary batteries. The morphology and microstructure of Zn–In LDHs were analyzed via scanning electron microscopy and X-ray diffraction, respectively. The electrochemical properties of Zn–In LDHs as anode material for Zn–Ni batteries were investigated via cyclic voltammetry, Tafel extrapolation of polarization curves, and galvanostatic charge–discharge test. The morphology of Zn–In LDHs shows a hexagonal structure. The electrical properties of Zn–In LDHs show that they have good cycle reversibility and corrosion resistance when Zn–In LDHs are applied to Zn–Ni secondary batteries. The analysis of the constant current charge–discharge test results shows that Zn–In LDHs have excellent cycle stability and charge–discharge characteristics. After 100 cycles, the cycle retention rate can reach values of up to 92.25%.

     

  • loading
  • [1]
    郭炳焜, 李新海, 楊松青. 化學電源: 電池原理及制造技術. 長沙: 中南大學出版社, 2009

    Guo B K, Li X H, Yang S Q. Principle and Manufacturing Technology of Chemical Power Battery. Changsha: Central South University Press, 2009
    [2]
    賀紅梅, 楊占紅, 遲偉偉, 等. 鋅鎳電池用包覆氧化銦的氧化鋅的性能. 電池, 2011, 41(2):101 doi: 10.3969/j.issn.1001-1579.2011.02.014

    He H M, Yang Z H, Chi W W, et al. The performance of indium oxide coated zinc oxide for Zn?Ni battery. Battery Bimonthly, 2011, 41(2): 101 doi: 10.3969/j.issn.1001-1579.2011.02.014
    [3]
    Yuan Y F, Tu J P, Guo S Y, et al. Characteristics and electrochemical performance of Ni-coated ZnO prepared by an electroless plating proces. Appl Surf Sci, 2008, 254(16): 5080 doi: 10.1016/j.apsusc.2008.02.040
    [4]
    Zhu L Q, Zhang H, Li W P, et al. Investigation of zinc powder modified by ultrasonic impregnation of rare earth lanthanum. Appl Surf Sci, 2007, 253(24): 9443 doi: 10.1016/j.apsusc.2007.06.008
    [5]
    Yuan Y F, Tu J P, Wu H M, et al. Influence of surface modification with Sn6O4(OH)4 on electrochemical performance of ZnO in Zn/Ni secondary cells. J Power Sources, 2007, 165(2): 905 doi: 10.1016/j.jpowsour.2006.12.037
    [6]
    Wu J Z, Tu J P, Yuan Y F, et al. Ag-modification improving the electrochemical performance of ZnO anode for Ni/Zn secondary batteries. J Alloys Compd, 2009, 479(1-2): 624 doi: 10.1016/j.jallcom.2009.01.013
    [7]
    Zeng D Q, Yang Z H, Wang S W, et al. Preparation and electrochemical performance of In-doped ZnO as anode material for Ni–Zn secondary cells. Electrochim Acta, 2011, 56(11): 4075 doi: 10.1016/j.electacta.2011.01.119
    [8]
    俞雙林, 俞小花, 呂祥, 等. 氧化鋅表面包覆Sn6O4(OH)4的制備及其在鋅鎳電池中的應用. 無機化學學報, 2018, 33(9):1573

    Yu S L, Yu X H, Lü X, et al. Sn6O4(OH)4 coated on ZnO surface: preparation and application in zinc-nickel secondary battery. J Inorg Chem, 2018, 33(9): 1573
    [9]
    Wen R J, Yang Z H, Fan X M, et al. Electrochemical performances of ZnO with different morphology as anodic materials for Ni/Zn secondary batteries. Electrochim Acta, 2012, 83: 376 doi: 10.1016/j.electacta.2012.08.034
    [10]
    Luo Z G, Sang S B, Wu Q M, et al. A conductive additive for Zn electrodes in secondary Ni/Zn batteries: The magneli phase titanium sub-oxides conductive ceramic TinO2n?1. ECS Electrochem Lett, 2012, 2(2): A21 doi: 10.1149/2.008302eel
    [11]
    龍偉, 楊占紅, 廖慶豐. 碳包覆氧化鋅材料在鋅鎳二次電池中的應用研究. 應用化工, 2013, 42(6):983

    Long W, Yang Z H, Liao Q F. The application of ZnO coated with carbon for Ni?Zn secondary battery. Appl Chem Ind, 2013, 42(6): 983
    [12]
    俞雙林, 俞小花, 呂祥, 等. 鋅鎳電池負極存在的問題及解決途徑的研究. 電源技術, 2018, 42(10):1585 doi: 10.3969/j.issn.1002-087X.2018.10.049

    Yu S L, Yu X H, Lü X, et al. Study on problems and solutions of zinc electrode for zinc-nickel battery. Chin J Power Sources, 2018, 42(10): 1585 doi: 10.3969/j.issn.1002-087X.2018.10.049
    [13]
    施學金, 汪云華, 張戰勝. 鋅鎳二次電池用鋅酸鈣材料的研究進展. 蓄電池, 2019, 56(3):114

    Shi X J, Wang Y H, Zhang Z S. Research progress in calcium zincate material for Zn–Ni secondary battery. Chin Labat Man, 2019, 56(3): 114
    [14]
    李永剛, 俞雙林, 俞小花, 等. 不同形貌鋅酸鈣的制備及其在鋅鎳電池中的應用研究. 現代化工, 2018, 38(5):81

    Li Y G, Yu S L, Yu X H, et al. Preparation of calcium zincate with different morphologies and their applications in Zn–Ni battery. Mod Chem Ind, 2018, 38(5): 81
    [15]
    徐堅, 潘玉妹, 陳強, 等. 水滑石的制備及應用進展. 中國塑料, 2016, 30(4):23

    Xu J, Pan Y M, Chen Q, et al. Research progress of preparation and applications of layered double hydroxides. China Plast, 2016, 30(4): 23
    [16]
    Debecker D P, Gaigneaux E M, Busca G. Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry, 2009, 15(16): 3920 doi: 10.1002/chem.200900060
    [17]
    Mokhtar M, Saleh T S, Basahel S N. Mg–Al hydrotalcites as efficient catalysts for aza-Michael addition reaction: A green protocol. J Mol Catal A Chem, 2012, 353-354: 122 doi: 10.1016/j.molcata.2011.11.015
    [18]
    Fan X M, Yang Z H, Long W, et al. The preparation and electrochemical performance of In(OH)3-coated Zn?Al?hydrotalcite as anode material for Zn–Ni secondary cell. Electrochim Acta, 2013, 92: 365 doi: 10.1016/j.electacta.2013.01.035
    [19]
    Fan X M, Yang Z H, Wen R J, et al. The application of Zn–Al?hydrotalcite as a novel anodic material for Ni–Zn secondary cells. J Power Sources, 2013, 224: 80 doi: 10.1016/j.jpowsour.2012.09.101
    [20]
    Xie X E, Yang Z H, Feng Z B, et al. Electrochemical properties of ZnO added with Zn?Al?hydrotalcites as anode materials for Zinc/Nickel alkaline secondary batteries. Electrochim Acta, 2015, 154: 308 doi: 10.1016/j.electacta.2014.12.101
    [21]
    Yang B, Yang Z H, Peng Z G, et al. Effect of silver additive on the electrochemical performance of ZnAl-layered double hydroxide as anode material for nickel-zinc rechargeable batteries. Electrochim Acta, 2014, 132: 83 doi: 10.1016/j.electacta.2014.03.126
    [22]
    Fan X M, Yang Z H, Xie X E, et al. The electrochemical behaviors of Zn–Al–La?hydrotalcite in Zn–Ni secondary cells. J Power Sources, 2013, 241: 404 doi: 10.1016/j.jpowsour.2013.04.136
    [23]
    Zhang Z, Yang Z H, Huang J H, et al. Enhancement of electrochemical performance with Zn?Al?Bi layered hydrotalcites as anode material for Zn/Ni secondary battery. Electrochim Acta, 2015, 155: 61 doi: 10.1016/j.electacta.2014.12.145
    [24]
    Wang T T, Yang Z H, Yang B, et al. The electrochemical performances of Zn–Sn–Al?hydrotalcites in Zn–Ni secondary cells. J Power Sources, 2014, 257: 174 doi: 10.1016/j.jpowsour.2014.02.006
    [25]
    Wang R J, Yang Z H. Synthesis and high cycle performance of Zn–Al–In?hydrotalcite as anode materials for Ni–Zn secondary batteries. RSC Adv, 2013, 3(43): 19924 doi: 10.1039/c3ra43045f
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (2318) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频