Citation: | WU Jia-song, JIANG Yi-han, WANG Wu-rong, WEI Xi-cheng. High-temperature friction of 7075 aluminum alloy sheet during hot stamping[J]. Chinese Journal of Engineering, 2020, 42(12): 1631-1638. doi: 10.13374/j.issn2095-9389.2019.12.11.004 |
[1] |
Chegini M, Fallahi A, Shaeri M H. Effect of equal channel angular pressing (ECAP) on wear behavior of Al–7075 alloy. Procedia Mater Sci, 2015, 11: 95 doi: 10.1016/j.mspro.2015.11.116
|
[2] |
Huttunen-Saarivirta E, Kilpi L, Hakala T J, et al. Insights into the behaviour of tool steel-aluminium alloy tribopair at different temperatures. Tribol Int, 2018, 119: 567 doi: 10.1016/j.triboint.2017.11.041
|
[3] |
侯隴剛, 趙鳳, 莊林忠, 等. 基于厚向組織性能考量的7B50鋁合金中厚板回歸再時效熱處理. 工程科學學報, 2017, 39(3):432
Hou L G, Zhao F, Zhuang L Z, et al. Retrogression and re-aging 7B50 Al alloy plates based on examining the through-thickness microstructures and mechanical properties. Chin J Eng, 2017, 39(3): 432
|
[4] |
馬嚴瑋, 王寶雨, 校文超, 等. 固溶時效工藝對6016鋁合金力學性能的影響及多目標優化. 工程科學學報, 2017, 39(1):75
Ma Y W, Wang B Y, Xiao W C, et al. Effect of solution and aging processes on the mechanical properties of 6016 aluminum alloy and multi-objective optimization. Chin J Eng, 2017, 39(1): 75
|
[5] |
Laurino A, Andrieu E, Harouard J P, et al. Effect of corrosion on the fatigue life and fracture mechanisms of 6101 aluminum alloy wires for car manufacturing applications. Mater Des, 2014, 53: 236 doi: 10.1016/j.matdes.2013.06.079
|
[6] |
Liu Q, Chen S C, Gu R Y, et al. Effect of heat treatment conditions on mechanical properties and precipitates in sheet metal hot stamping of 7075 aluminum alloy. J Mater Eng Perform, 2018, 27(9): 4423 doi: 10.1007/s11665-018-3588-z
|
[7] |
Shamsipur A, Asadkarami S. Microstructure and mechanical properties of copper surface composite layers reinforced by nano and microscale SiC particles via friction stir processing. Adv Compos Mater, 2019, 28(6): 591 doi: 10.1080/09243046.2019.1623453
|
[8] |
Andreatta F, Terryn H, de Wit J H W. Corrosion behaviour of different tempers of AA7075 aluminium alloy. Electrochim Acta, 2004, 49(17-18): 2851 doi: 10.1016/j.electacta.2004.01.046
|
[9] |
楊曉明, 王寶雨, 校文超, 等. 基于M–K理論的6016鋁合金成形極限曲線預測. 工程科學學報, 2018, 40(4):485
Yang X M, Wang B Y, Xiao W C, et al. Prediction of forming limit curve of 6016 aluminum alloy based on M–K theory. Chin J Eng, 2018, 40(4): 485
|
[10] |
楊希英, 郎利輝, 劉康寧, 等. 基于修正M–K模型的鋁合金板材成形極限圖預測. 北京航空航天大學學報, 2015, 41(4):675
Yang X Y, Lang L H, Liu K N, et al. Prediction of forming limit diagram of AA7075–O aluminum alloy sheet based on modified M–K model. J Beijing Univ Aeron Astron, 2015, 41(4): 675
|
[11] |
杜平海, 郎利輝, 劉寶勝, 等. 基于M–K模型的成形極限預測及參數影響. 塑性工程學報, 2011, 18(5):84 doi: 10.3969/j.issn.1007-2012.2011.05.017
Du P H, Lang L H, Liu B S, et al. Theoretical prediction and parameter influence of FLDs based on M–K model. J Plast Eng, 2011, 18(5): 84 doi: 10.3969/j.issn.1007-2012.2011.05.017
|
[12] |
馬高山, 萬敏, 吳向東. 基于M–K模型的鋁鋰合金熱態下成形極限預測. 中國有色金屬學報, 2008, 18(6):980 doi: 10.3321/j.issn:1004-0609.2008.06.005
Ma G S, Wan M, Wu X D. Theoretical prediction of FLDs for Al-Li alloy at elevated temperature based on M–K model. Chin J Nonferrous Met, 2008, 18(6): 980 doi: 10.3321/j.issn:1004-0609.2008.06.005
|
[13] |
何祝斌, 凡曉波, 苑世劍. 鋁合金板材熱成形-淬火一體化工藝研究進展. 精密成形工程, 2014, 6(5):37 doi: 10.3969/j.issn.1674-6457.2014.05.007
He Z B, Fan X B, Yuan S J. Review of hot forming-quenching integrated process of aluminum alloy. J Netshape Form Eng, 2014, 6(5): 37 doi: 10.3969/j.issn.1674-6457.2014.05.007
|
[14] |
陳世超, 賴思旸, 顧瑞瑩, 等. 鋁合金板材模壓淬火復合成型方法及其一體化裝置: 中國專利, CN201710291517.4. 2017-10-27
Chen S C, Lai S Y, Gu R Y, et al. Aluminum Alloy Sheet Molding and Quenching Compound Forming Method and Integrated Device: China Patent, CN201710291517.4. 2017-10-27
|
[15] |
Liu Y T, Mol J M C, Janssen G C A M. Combined corrosion and wear of aluminium alloy 7075–T6. J Bio Tribo-Corros, 2016, 2: 9 doi: 10.1007/s40735-016-0042-3
|
[16] |
Pujante J, Pelcastre L, Vilaseca M, et al. Investigations into wear and galling mechanism of aluminium alloy-tool steel tribopair at different temperatures. Wear, 2013, 308(1-2): 193 doi: 10.1016/j.wear.2013.06.015
|
[17] |
Ghiotti A, Simonetto E, Bruschi S. Influence of process parameters on tribological behaviour of AA7075 in hot stamping. Wear, 2019, 426-427: 348 doi: 10.1016/j.wear.2018.11.031
|
[18] |
Kumar S, Sood P K. A comparative study of dry sliding wear characterization of nano SiC and nano B4C filled Al7075 nanocomposites under high temperature environment. Mater Res Express, 2019, 6(5): 056506 doi: 10.1088/2053-1591/aae045
|
[19] |
Haq M I U, Anand A. Dry sliding friction and wear behavior of AA7075–Si3N4 composite. Silicon, 2018, 10(5): 1819 doi: 10.1007/s12633-017-9675-1
|
[20] |
Haq M I U, Anand A. Friction and wear behavior of AA7075–Si3N4 composites under dry conditions: effect of sliding speed. Silicon, 2019, 11(2): 1047 doi: 10.1007/s12633-018-9967-0
|
[21] |
江福椿, 高凱翔, 王武榮. 用于模擬熱沖壓成形過程的數顯式高溫摩擦磨損試驗機的研制. 上海金屬, 2019, 41(2):99 doi: 10.3969/j.issn.1001-7208.2019.02.018
Jiang F C, Gao K X, Wang W R. Development of a digital high-temperature friction and wear tester for simulating hot-stamping process. Shanghai Met, 2019, 41(2): 99 doi: 10.3969/j.issn.1001-7208.2019.02.018
|
[22] |
El-Morsy A W. Dry sliding wear behavior of hot deformed magnesium AZ61 alloy as influenced by the sliding conditions. Mater Sci Eng A, 2008, 473(1-2): 330 doi: 10.1016/j.msea.2007.03.096
|
[23] |
Avcu E. The influences of ECAP on the dry sliding wear behaviour of AA7075 aluminium alloy. Tribol Int, 2017, 110: 173
|
[24] |
Vaziri H S, Shokuhfar A, Afghahi S S S. Investigation of mechanical and tribological properties of aluminum reinforced with tungsten disulfide (WS2) nanoparticles. Mater Res Express, 2019, 6(4): 045018 doi: 10.1088/2053-1591/aafa00
|
[25] |
Dwivedi D K. Adhesive wear behaviour of cast aluminium-silicon alloys: overview. Mater Des, 2010, 31(5): 2517 doi: 10.1016/j.matdes.2009.11.038
|