<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
WANG Yan-tao, LI Jing-liang, GU Run-ping. Flight operation risk prediction model based on the multivariate chaotic time series[J]. Chinese Journal of Engineering, 2020, 42(12): 1664-1673. doi: 10.13374/j.issn2095-9389.2019.12.09.002
Citation: WANG Yan-tao, LI Jing-liang, GU Run-ping. Flight operation risk prediction model based on the multivariate chaotic time series[J]. Chinese Journal of Engineering, 2020, 42(12): 1664-1673. doi: 10.13374/j.issn2095-9389.2019.12.09.002

Flight operation risk prediction model based on the multivariate chaotic time series

doi: 10.13374/j.issn2095-9389.2019.12.09.002
More Information
  • Corresponding author: E-mail: CAUCwyt@126.com
  • Received Date: 2019-12-09
  • Publish Date: 2020-12-25
  • With the development of civil aviation safety management, the flight operation risk of airlines is of increasing concern. Risk prediction technology extracts information from historical and current risk data and uses it to predict short-term trends in the future, thus helping identify emerging risks and providing more time for risk management. Compared with non-dynamic risk assessment, this technology is more substantial for the management and control of flight operation risk. To improve the accuracy of flight operation risk prediction, on the basis of the flight risk data of a certain airline in 2016—2018, the chaotic characteristics of 15 risk time series were verified and a short-term risk prediction model based on the multivariate chaotic time series was constructed. First, multivariate phase space reconstruction was performed on 15 risk time series, and the phase space was reduced by the principal component analysis (PCA) method. Then, four short-term risk prediction models, namely, extreme learning machine, radial basis function (RBF) neural network, echo state network, and Elman neural network, were built on the basis of iterative prediction. Finally, the phase space after dimension reduction was used as the model input, and the risk prediction results for 1–7 d were calculated and compared. Results show that the total number of dimensions after multivariable phase space reconstruction is 62, which is reduced to 31 by PCA dimension reduction. Of the four prediction models, the RBF neural network model after dimension reduction has the best prediction effect. The occurrence frequency of <25% relative error is 82.62% for the first day and 75% for the fifth day. The corrected mean absolute percentage error for the first day is 11.32%, and lower than 20% for the next 4 d. Thus, the calculation results meet the requirements of the airline. The prediction results within 1–5 d have practical value for flight risk management, proving that the risk prediction method based on the multivariate chaotic time series is feasible and effective.

     

  • loading
  • [1]
    馮正霖. 以新發展理念引領新時代民航高質量發展. 人民論壇, 2019(5):6 doi: 10.3969/j.issn.1004-3381.2019.05.001

    Feng Z L. Promote the high-quality development of civil aviation with the new development concept. People's Forum, 2019(5): 6 doi: 10.3969/j.issn.1004-3381.2019.05.001
    [2]
    Bowen B D, Headley D E, Luedtke J R. A quantitative methodology for measuring airline quality. J Aviation/Aerospace Educ Res, 1992, 2(2): 27
    [3]
    Lower M, Magott J, Skorupski J. Analysis of air traffic incidents using event trees with fuzzy probabilities. Fuzzy Sets Syst, 2016, 293(C): 50
    [4]
    Kokangül A, Polat U, Dagsuyu C. A new approximation for risk assessment using the AHP and Fine Kinney methodologies. Saf Sci, 2017, 91: 24 doi: 10.1016/j.ssci.2016.07.015
    [5]
    FAA. Flight risk assessment tool[EB/OL]. Federal Aviation Administration Online (2007-08-02)[2018-08-31]. https://www.faa.gov/news/safety_briefing/2016/media/SE_Topic_16-12.pdf
    [6]
    NATA. NATA’s risk assessment tool?RA Check[EB/OL]. National Air Transportation Association Online (2012-01-23)[2018-08-31]. https://www.acukwikalert.com/on-the-radar/2010/3/9/natas-ra-check-automated-risk-assessment-tool-launched-at-sa.html
    [7]
    孫瑞山, 劉漢輝. 航空公司安全評估理論與實踐. 中國安全科學學報, 1999, 9(3):69 doi: 10.3969/j.issn.1003-3033.1999.03.014

    Sun R S, Liu H H. Assessment theory and practice for airline safety. China Saf Sci J, 1999, 9(3): 69 doi: 10.3969/j.issn.1003-3033.1999.03.014
    [8]
    王巖韜, 李蕊, 盧飛, 等. 基于多因素分析的航班運行風險評估體系. 天津工業大學學報, 2014, 33(3):84 doi: 10.3969/j.issn.1671-024X.2014.03.017

    Wang Y T, Li R, Lu F, et al. Risk assessment system of flight operation based on multiple factor analysis. J Tianjin Polytech Univ, 2014, 33(3): 84 doi: 10.3969/j.issn.1671-024X.2014.03.017
    [9]
    王巖韜, 趙嶷飛. 基于多算法協作的航班運行風險辨識研究. 中國安全科學學報, 2018, 28(6):166

    Wang Y T, Zhao Y F. Research on flight operations risk identification based on multi-algorithm collaboration. China Saf Sci J, 2018, 28(6): 166
    [10]
    PROSPEROFP7. Aviation sector collaborates to make ultra-safe travel even safer[EB/OL]. PROSPERO Online (2015-11-12)[2018.10.26]. http://www.prosperofp7.eu/news/36-aviation-sector-collaborates-to-make-ultra-safe-travel-even-safer
    [11]
    Lalis A, Socha V, Kraus J, et al. Conditional and unconditional safety performance forecasts for aviation predictive risk management // 2018 IEEE Aerospace Conference. Big Sky, 2018
    [12]
    Zhang X G, Mahadevans S. Ensemble machine learning models for aviation incident risk prediction. Decision Support Syst, 2019, 116: 48 doi: 10.1016/j.dss.2018.10.009
    [13]
    王巖韜, 劉宏, 唐建勛, 等. 動態預測技術在航班運行風險中的應用. 控制與決策, 2019, 34(9):1946

    Wang Y T, Liu H, Tang J X, et al. Dynamic prediction technology in the application of flight operation risk. Control Decision, 2019, 34(9): 1946
    [14]
    黎敏, 徐金梧, 陽建宏, 等. 基于多變量相重構的混沌時間序列預測. 北京科技大學學報, 2008, 30(2):208 doi: 10.3321/j.issn:1001-053X.2008.02.021

    Li M, Xu J W, Yang J H, et al. Prediction for chaotic time series based on phase reconstruction of multivariate time series. J Univ Sci Technol Beijing, 2008, 30(2): 208 doi: 10.3321/j.issn:1001-053X.2008.02.021
    [15]
    方芬. 多變量混沌時間序列Volterra自適應實時預測. 系統工程與電子技術, 2009, 31(10):2476 doi: 10.3321/j.issn:1001-506X.2009.10.043

    Fang F. Volterra adaptive real-time prediction of multivariate chaotic time series. Syst Eng Electron, 2009, 31(10): 2476 doi: 10.3321/j.issn:1001-506X.2009.10.043
    [16]
    張春濤, 馬千里, 彭宏, 等. 基于條件熵擴維的多變量混沌時間序列相空間重構. 物理學報, 2011, 60(2):118

    Zhang C T, Ma Q L, Peng H, et al. Multivariate chaotic time series phase space reconstruction based on extending dimension by conditional entropy. Acta Phys Sin, 2011, 60(2): 118
    [17]
    侯公羽, 梁榮, 孫磊, 等. 基于多變量混沌時間序列的煤礦斜井TBM施工動態風險預測. 物理學報, 2014, 63(9):111

    Hou G Y, Liang R, Sun L, et al. Risk analysis on long inclined-shaft construction in coalmine by TBM techniques based on multiple variables chaotic time series. Acta Phys Sin, 2014, 63(9): 111
    [18]
    鐘儀華, 林旭旭, 劉雨鑫. 基于多元混沌時間序列的油田產量預測模型. 數學的實踐與認識, 2016, 46(6):99

    Zhong Y H, Lin X X, Liu Y X. The oilfield output prediction model based on multivariate chaotic time series. Math Pract Theory, 2016, 46(6): 99
    [19]
    杜柳青, 曾翠蘭, 余永維. 基于多元混沌時間序列的數控機床運動精度預測. 農業機械學報, 2017, 48(3):390 doi: 10.6041/j.issn.1000-1298.2017.03.050

    Du L Q, Zeng C L, Yu Y W. Prediction of numerical control machine's motion precision based on multivariate chaotic time series. Trans Chin Soc Agric Mach, 2017, 48(3): 390 doi: 10.6041/j.issn.1000-1298.2017.03.050
    [20]
    張淑清, 劉子玥, 何泓運, 等. 基于多變量加權一階局域混沌預測模型優化及應用. 計量學報, 2018, 39(1):77 doi: 10.3969/j.issn.1000-1158.2018.01.17

    Zhang S Q, Liu Z Y, He H Y, et al. Optimization and application of weighted one-rank local chaos prediction model based on multi-variable. Acta Metrol Sin, 2018, 39(1): 77 doi: 10.3969/j.issn.1000-1158.2018.01.17
    [21]
    黃發明, 殷坤龍, 楊背背, 等. 基于時間序列分解和多變量混沌模型的滑坡階躍式位移預測. 地球科學, 2018, 43(3):887

    Huang F M, Yin K L, Yang B B, et al. Step-like displacement prediction of landslide based on time series decomposition and multivariate chaotic model. Earth Sci, 2018, 43(3): 887
    [22]
    Coleman M E, Marks H M. Qualitative and quantitative risk assessment. Food Control, 1999, 10(4-5): 289 doi: 10.1016/S0956-7135(99)00052-3
    [23]
    Takens F. Detecting Strange Attractors in Turbulence. Lecture Notes in Mathematics. Heidelberg: Springer-verlag, 1981: 366
    [24]
    何曉群. 多元統計分析. 4版. 北京: 中國人民大學出版社, 2015

    He X Q. Multivariate Statistical Analysis. 4th Ed. Beijing: China Renmin University Press, 2015
    [25]
    姜雪瑩, 郭穎, 施惠元, 等. 基于TSA多變量非線性RBF神經網絡預測控制. 控制工程, 2019, 26(9):1655

    Jiang X Y, Guo Y, Shi H Y, et al. Multivariable nonlinear RBF neural network predictive control based on TSA. Control Eng China, 2019, 26(9): 1655
    [26]
    許美玲, 韓敏. 多元混沌時間序列的因子回聲狀態網絡預測模型. 自動化學報, 2015, 41(5):1042

    Xu M L, Han M. Factor echo state network for multivariate chaotic time series prediction. Acta Autom Sin, 2015, 41(5): 1042
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Article views (1863) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频