Citation: | HUANG Yi-meng, CAO Xiao-qiang, YIN Ji-jie, LI Guang, ZHANG Di, LI Ming-zhen, MENG Na, CHEN Ping, YOU Xiao-fang, CHEN Ming, YAN Bing-qi, LI Lin, WANG Peng, Lü Xian-jun. Review on the application of MOF materials for removal of pollutants from the water (II)[J]. Chinese Journal of Engineering, 2020, 42(6): 680-692. doi: 10.13374/j.issn2095-9389.2019.12.08.003 |
[1] |
Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework. Nature, 1995, 378(6558): 703 doi: 10.1038/378703a0
|
[2] |
Kitagawa S, Kitaura R, Noro S I. Functional porous coordination polymers. Angew Chem Int Ed, 2004, 43(18): 2334 doi: 10.1002/anie.200300610
|
[3] |
Janiak C. Functional organic analogues of zeolites based on metal-organic coordination frameworks. Angew Chem Int Ed, 1997, 36(13-14): 1431
|
[4] |
Li H L, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402(6759): 276 doi: 10.1038/46248
|
[5] |
Park K S, Ni Z, C?té A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci, 2006, 103(27): 10186 doi: 10.1073/pnas.0602439103
|
[6] |
Chen X, Jiang H, Hou B, et al. Boosting chemical stability, catalytic activity, and enantioselectivity of metal–organic frameworks for batch and flow reactions. J Am Chem Soc, 2017, 139(38): 13476 doi: 10.1021/jacs.7b06459
|
[7] |
Zhou X P, Li M, Liu J, et al. Gyroidal metal–organic frameworks. J Am Chem Soc, 2012, 134(1): 67 doi: 10.1021/ja208469n
|
[8] |
He H M, Sun Q, Gao W Y, et al. A stable metal–organic framework featuring a local buffer environment for carbon dioxide fixation. Angew Chem Int Ed, 2018, 57(17): 4657 doi: 10.1002/anie.201801122
|
[9] |
Rajak R, Saraf M, Mohammad A, et al. Design and construction of a ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications. J Mater Chem A, 2017, 5(34): 17998 doi: 10.1039/C7TA03773B
|
[10] |
鄒星云, 陳明, 曹曉強, 等. MOF材料在水環境污染物去除方面的應用現狀及發展趨勢(I). 工程科學學報, 2020, 42(3):289
Zou X Y, Chen M, Cao X Q, et al. Review of application of MOF materials for removal of environmental pollutants from water (I). Chin J Eng, 2020, 42(3): 289
|
[11] |
Haque E, Lee J E, Jang I T, et al. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J Hazard Mater, 2010, 181(1-3): 535 doi: 10.1016/j.jhazmat.2010.05.047
|
[12] |
Haque E, Jun J W, Jhung S H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J Hazard Mater, 2011, 185(1): 507 doi: 10.1016/j.jhazmat.2010.09.035
|
[13] |
Lin S, Song Z L, Che G B, et al. Adsorption behavior of metal-organic frameworks for methylene blue from aqueous solution. Microporous Mesoporous Mater, 2014, 193: 27 doi: 10.1016/j.micromeso.2014.03.004
|
[14] |
Lin K Y A, Chang H A. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere, 2015, 139: 624 doi: 10.1016/j.chemosphere.2015.01.041
|
[15] |
Huo S H, Yan X P. Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J Mater Chem, 2012, 22(15): 7449 doi: 10.1039/c2jm16513a
|
[16] |
Wang K K, Li C F, Liang Y X, et al. Rational construction of defects in a metal-organic framework for highly efficient adsorption and separation of dyes. Chem Eng J, 2016, 289: 486 doi: 10.1016/j.cej.2016.01.019
|
[17] |
Yue Y F, Qiao Z A, Fulvio P F, et al. Template-free synthesis of hierarchical porous metal-organic frameworks. J Am Chem Soc, 2013, 135(26): 9572 doi: 10.1021/ja402694f
|
[18] |
Huang H L, Li J R, Wang K K, et al. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nature Commun, 2015, 6: 8847 doi: 10.1038/ncomms9847
|
[19] |
Tanaka S, Miyashita R. Aqueous-system-enabled spray-drying technique for the synthesis of hollow polycrystalline ZIF-8 MOF particles. ACS Omega, 2017, 2(10): 6437 doi: 10.1021/acsomega.7b01325
|
[20] |
Dadfarnia S, Shabani A M H, Moradi S E, et al. Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent. Appl Surf Sci, 2015, 330: 85 doi: 10.1016/j.apsusc.2014.12.196
|
[21] |
Bibi R, Wei L F, Shen Q H, et al. Effect of amino functionality on the uptake of cationic dye by titanium-based metal organic frameworks. J Chem Eng Data, 2017, 62(5): 1615 doi: 10.1021/acs.jced.6b01012
|
[22] |
Oveisi M, Asli M A, Mahmoodi N M. MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems. J Hazard Mater, 2018, 347: 123 doi: 10.1016/j.jhazmat.2017.12.057
|
[23] |
Fan Y H, Zhang S W, Qin S B, et al. An enhanced adsorption of organic dyes onto NH2 functionalization titanium-based metal-organic frameworks and the mechanism investigation. Microporous Mesoporous Mater, 2018, 263: 120 doi: 10.1016/j.micromeso.2017.12.016
|
[24] |
Li L, Liu X L, Geng H Y, et al. A MOF/graphite oxide hybrid (MOF: HKUST-1) material for the adsorption of methylene blue from aqueous solution. J Mater Chem A, 2013, 1(35): 10292 doi: 10.1039/c3ta11478c
|
[25] |
Huang L J, He M, Chen B B, et al. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere, 2018, 199: 435 doi: 10.1016/j.chemosphere.2018.02.019
|
[26] |
Xu M J, Huang H T, Li N, et al. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. Ecotoxicol Environ Safety, 2019, 175: 289 doi: 10.1016/j.ecoenv.2019.01.131
|
[27] |
Wang J L, Zhuan R, Chu L B. The occurrence, distribution and degradation of antibiotics by ionizing radiation: an overview. Sci Total Environ, 2019, 646: 1385 doi: 10.1016/j.scitotenv.2018.07.415
|
[28] |
Azhar M R, Abid H R, Sun H Q, et al. Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. J Colloid Interface Sci, 2016, 478: 344 doi: 10.1016/j.jcis.2016.06.032
|
[29] |
Jiang J Q, Yang C X, Yan X P. Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS Appl Mater Interfaces, 2013, 5(19): 9837 doi: 10.1021/am403079n
|
[30] |
Yang X Q, Yang C X, Yan X P. Zeolite imidazolate framework-8 as sorbent for on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of tetracyclines in water and milk samples. J Chromatogr A, 2013, 1304: 28 doi: 10.1016/j.chroma.2013.06.064
|
[31] |
Dehghan A, Zarei A, Jaafari J, et al. Tetracycline removal from aqueous solutions using zeolitic imidazolate frameworks with different morphologies: A mathematical modeling. Chemosphere, 2019, 217: 250 doi: 10.1016/j.chemosphere.2018.10.166
|
[32] |
Sun W L, Li H B, Li H M, et al. Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: Batch experiment and DFT calculation. Chem Eng J, 2019, 360: 645 doi: 10.1016/j.cej.2018.12.021
|
[33] |
Hasan Z, Khan N A, Jhung S H. Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks. Chem Eng J, 2016, 284: 1406 doi: 10.1016/j.cej.2015.08.087
|
[34] |
Zhuang S T, Cheng R, Wang J L. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks. Chem Eng J, 2019, 359: 354 doi: 10.1016/j.cej.2018.11.150
|
[35] |
Liu W C, Shen X, Han Y Y, et al. Selective adsorption and removal of drug contaminants by using an extremely stable Cu(II)-based 3D metal-organic framework. Chemosphere, 2019, 215: 524 doi: 10.1016/j.chemosphere.2018.10.075
|
[36] |
Wang B, Lv X L, Feng D W, et al. Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J Am Chem Soc, 2016, 138(19): 6204 doi: 10.1021/jacs.6b01663
|
[37] |
Song J Y, Jhung S H. Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: quantitative analyses of H-bonding in adsorption. Chem Eng J, 2017, 322: 366 doi: 10.1016/j.cej.2017.04.036
|
[38] |
Zhao X D, Zhao H F, Dai W J, et al. A metal-organic framework with large 1-D channels and rich -OH sites for high-efficiency chloramphenicol removal from water. J Colloid Interface Sci, 2018, 526: 28 doi: 10.1016/j.jcis.2018.04.095
|
[39] |
Zhuang S T, Liu Y, Wang J L. Mechanistic insight into the adsorption of diclofenac by MIL-100: Experiments and theoretical calculations. Environ Pollut, 2019, 253: 616 doi: 10.1016/j.envpol.2019.07.069
|
[40] |
Zhuo N, Lan Y Q, Yang W B, et al. Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/natural polymer composite beads. Sep Purif Technol, 2017, 177: 272 doi: 10.1016/j.seppur.2016.12.041
|
[41] |
Li Y X, Yang Z X, Wang Y L, et al. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nature Commun, 2017, 8: 1354 doi: 10.1038/s41467-017-01208-w
|
[42] |
Park E Y, Hasan Z, Khan N A, et al. Adsorptive removal of bisphenol-A from water with a metal-organic framework, a porous chromium-benzenedicarboxylate. J Nanosci Nanotechnol, 2013, 13(4): 2789 doi: 10.1166/jnn.2013.7411
|
[43] |
Liu B J, Yang F, Zou Y X, et al. Adsorption of phenol and p-nitrophenol from aqueous solutions on metal-organic frameworks: effect of hydrogen bonding. J Chem Eng Data, 2014, 59(5): 1476 doi: 10.1021/je4010239
|
[44] |
Sun B, Zhang L X, Yang L Z, et al. Agricultural non-point source pollution in China: causes and mitigation measures. Ambio, 2012, 41(4): 370 doi: 10.1007/s13280-012-0249-6
|
[45] |
Jung B K, Hasan Z, Jhung S H. Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal-organic framework. Chem Eng J, 2013, 234: 99 doi: 10.1016/j.cej.2013.08.110
|
[46] |
Seo Y S, Khan N A, Jhung S H. Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal-organic framework. Chem Eng J, 2015, 270: 22 doi: 10.1016/j.cej.2015.02.007
|
[47] |
Jia Y Y, Zhang Y H, Xu J, et al. A high-performance “sweeper” for toxic cationic herbicides: an anionic metal-organic framework with a tetrapodal cage. Chem Commun, 2015, 51(98): 17439 doi: 10.1039/C5CC07249B
|
[48] |
Liu G Y, Li L Y, Xu D H, et al. Metal-organic framework preparation using magnetic graphene oxide-β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr Polym, 2017, 175: 584 doi: 10.1016/j.carbpol.2017.06.074
|
[49] |
Moeini Z, Azhdarpoor A, Yousefinejad S, et al. Removal of atrazine from water using titanium dioxide encapsulated in salicylaldehyde-NH2-MIL-101 (Cr): Adsorption or oxidation mechanism. J Clear Prod, 2019, 224: 238 doi: 10.1016/j.jclepro.2019.03.236
|
[50] |
Vermoortele F, Bueken B, Le Bars G, et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). J Am Chem Soc, 2013, 135(31): 11465 doi: 10.1021/ja405078u
|
[51] |
Cai G R, Jiang H L. A Modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew Chem Int Ed, 2017, 56(2): 563 doi: 10.1002/anie.201610914
|
[52] |
Abdelhamid H N, Zou X D. Template-free and room temperature synthesis of hierarchical porous zeolitic imidazolate framework nanoparticles and their dye and CO2 sorption. Green chem, 2018, 20(5): 1074 doi: 10.1039/C7GC03805D
|
[53] |
Tan J Y, Shi J X, Cui P H, et al. A Ni3(OH)(COO)6-based MOF from C3 symmetric ligands: Structure and heterogeneous catalytic activities in one-pot synthesis of imine. Microporous Mesoporous Mater, 2019, 287: 152 doi: 10.1016/j.micromeso.2019.06.003
|
[54] |
Gupta S S R, Kantam M L. Catalytic conversion of furfuryl alcohol or levulinic acid into alkyl levulinates using a sulfonic acid-functionalized hafnium-based MOF. Catal Commun, 2019, 124: 62 doi: 10.1016/j.catcom.2019.03.003
|
[55] |
Yang Y, Guo Z L, Chen X H, et al. A Ni3O-cluster based porous MOF for catalytic conversion of CO2 to cyclic carbonates. J Solid State Chem, 2019, 276: 190 doi: 10.1016/j.jssc.2019.05.010
|
[56] |
Zhang T Y, Liu W X, Meng G, et al. Construction of hierarchical copper-based metal-organic framework nanoarrays as functional structured catalysts. ChemCatChem, 2017, 9(10): 1771 doi: 10.1002/cctc.201700060
|
[57] |
Sun X Y, Shi Y, Zhang W, et al. A new type Ni-MOF catalyst with high stability for selective catalytic reduction of NOx with NH3. Catal Commun, 2018, 114: 104 doi: 10.1016/j.catcom.2018.06.012
|
[58] |
Chen X, Yu E Q, Cai S C, et al. In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. Chem Eng J, 2018, 344: 469 doi: 10.1016/j.cej.2018.03.091
|
[59] |
Gao Q, Xu J, Bu X H. Recent advances about metal-organic frameworks in the removal of pollutants from wastewater. Coordinat Chem Rev, 2019, 378: 17 doi: 10.1016/j.ccr.2018.03.015
|
[60] |
Wu Y, Luo H J, Wang H. Synthesis of iron (III)-based metal-organic framework/graphene oxide composites with increased photocatalytic performance for dye degradation. RSC Adv, 2014, 4(76): 40435 doi: 10.1039/C4RA07566H
|
[61] |
Wang H, Yuan X Z, Wu Y, et al. In situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl Catal B-Environ, 2016, 186: 19 doi: 10.1016/j.apcatb.2015.12.041
|
[62] |
Wu X Y, Qi H X, Ning J J, et al. One silver(I)/tetraphosphine coordination polymer showing good catalytic performance in the photodegradation of nitroaromatics in aqueous solution. Appl Catal B-Environ, 2015, 168-169: 98 doi: 10.1016/j.apcatb.2014.12.024
|
[63] |
Wang D B, Jia F Y, Wang H, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J Colloid Interface Sci, 2018, 519: 273 doi: 10.1016/j.jcis.2018.02.067
|
[64] |
Dong W B, Wang D B, Wang H, et al. Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation. J Colloid Interface Sci, 2019, 535: 444 doi: 10.1016/j.jcis.2018.10.008
|
[65] |
Rasheed H U, Lv X M, Zhang S Y, et al. Ternary MIL-100(Fe)@Fe3O4/CA magnetic nanophotocatalysts (MNPCs): Magnetically separable and Fenton-like degradation of tetracycline hydrochloride. Adv Powder Technol, 2018, 29(12): 3305 doi: 10.1016/j.apt.2018.09.011
|
[66] |
Mehrabadi Z, Faghihian H. Comparative photocatalytic performance of TiO2 supported on clinoptilolite and TiO2/Salicylaldehyde-NH2-MIL-101(Cr) for degradation of pharmaceutical pollutant atenolol under UV and visible irradiations. J Photochem Photobiol A, 2018, 356: 102 doi: 10.1016/j.jphotochem.2017.12.042
|
[67] |
Ren G B, Zhou M H, Liu M M, et al. A novel vertical-flow electro-Fenton reactor for organic wastewater treatment. Chem Eng J, 2016, 298: 55 doi: 10.1016/j.cej.2016.04.011
|
[68] |
Hu C J, Huang D L, Zeng G M, et al. The combination of Fenton process and Phanerochaete chrysosporium for the removal of bisphenol A in river sediments: mechanism related to extracellular enzyme, organic acid and iron. Chem Eng J, 2018, 338: 432 doi: 10.1016/j.cej.2018.01.068
|
[69] |
Cheng M, Zeng G M, Huang D L, et al. Degradation of atrazine by a novel Fenton-like process and assessment the influence on the treated soil. J Hazard Mater, 2016, 312: 184 doi: 10.1016/j.jhazmat.2016.03.033
|
[70] |
Shao Z C, Huang C, Han X, et al. The effect of metal ions on photocatalytic performance based on an isostructural framework. Dalton Trans, 2015, 44(28): 12832 doi: 10.1039/C5DT01457C
|
[71] |
Tang J T, Wang J L. Iron-copper bimetallic metal-organic frameworks for efficient Fenton-like degradation of sulfamethoxazole under mild conditions. Chemosphere, 2020, 241: 125002 doi: 10.1016/j.chemosphere.2019.125002
|
[72] |
Wu Q S, Yang H P, Kang L, et al. Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: Acceleration of Fe(II)/Fe(III) cycle under visible light irradiation. Appl Catal B-Environ, 2020, 263: 118282 doi: 10.1016/j.apcatb.2019.118282
|
[73] |
Zhao H Y, Chen Y, Peng Q S, et al. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and ·OH generation in solar photo-electro-Fenton process. Appl Catal B-Environ, 2017, 203: 127 doi: 10.1016/j.apcatb.2016.09.074
|
[74] |
Jia M Y, Yang Z H, Xu H Y, et al. Integrating N and F co-doped TiO2 nanotubes with ZIF-8 as photoelectrode for enhanced photo-electrocatalytic degradation of sulfamethazine. Chem Eng J, 2020, 388: 124388 doi: 10.1016/j.cej.2020.124388
|
[75] |
Xiong Y, Che L Y, Fu Z Y, et al. Preparation of CuxO/C composite derived from Cu-MOFs as Fenton-like catalyst by two-step calcination strategy. Adv Powder Technol, 2018, 29(6): 1331 doi: 10.1016/j.apt.2018.02.028
|
[76] |
Tang J T, Wang J L. MOF-derived three-dimensional flower-like FeCu@C composite as an efficient Fenton-like catalyst for sulfamethazine degradation. Chem Eng J, 2019, 375: 122007 doi: 10.1016/j.cej.2019.122007
|
[77] |
Cashman M A, Kirschenbaum L, Holowachuk J, et al. Identification of hydroxyl and sulfate free radicals involved in the reaction of 1,4-dioxane with peroxone activated persulfate oxidant. J Hazard Mater, 2019, 380: 120875 doi: 10.1016/j.jhazmat.2019.120875
|
[78] |
Yun W C, Lin K Y A, Tong W C, et al. Enhanced degradation of paracetamol in water using sulfate radical-based advanced oxidation processes catalyzed by 3-dimensional Co3O4 nanoflower. Chem Eng J, 2019, 373: 1329 doi: 10.1016/j.cej.2019.05.142
|
[79] |
Ke Q, Shi Y P, Liu Y X, et al. Enhanced catalytic degradation of bisphenol A by hemin-MOFs supported on boron nitride via the photo-assisted heterogeneous activation of persulfate. Sep Purif Technol, 2019, 229: 115822 doi: 10.1016/j.seppur.2019.115822
|
[80] |
Azhar M R, Vijay P, Tadé M O, et al. Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products. Chemosphere, 2018, 196: 105 doi: 10.1016/j.chemosphere.2017.12.164
|
[81] |
Zhang S W, Gao H H, Xu X T, et al. MOF-derived CoN/N-C@SiO2 yolk-shell nanoreactor with dual active sites for highly efficient catalytic advanced oxidation processes. Chem Eng J, 2020, 381: 122670 doi: 10.1016/j.cej.2019.122670
|
[82] |
Zeng T, Zhang X L, Wang S H, et al. Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants. Environ Sci Technol, 2015, 49(4): 2350 doi: 10.1021/es505014z
|
[83] |
Li X H, Guo W L, Liu Z H, et al. Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A. J Hazard Mater, 2017, 324: 665 doi: 10.1016/j.jhazmat.2016.11.040
|
[84] |
Fang Z L, Bueken B, De Vos D E, et al. Defect-engineered metal-organic frameworks. Angew Chem Int Ed, 2015, 54(25): 7234 doi: 10.1002/anie.201411540
|
[85] |
Szilágyi P á, Serra-Crespo P, Gascon J, et al. The impact of post-synthetic linker functionalization of MOFs on methane storage: The role of defects. Front Energy Res, 2016, 4: 9
|
[86] |
Li J, Liu Y, Wang X X, et al. Experimental and theoretical study on selenate uptake to zirconium metal-organic frameworks: Effect of defects and ligands. Chem Eng J, 2017, 330: 1012 doi: 10.1016/j.cej.2017.08.038
|
[87] |
Jiao Y, Liu Y, Zhu G H, et al. Heat-treatment of defective UiO-66 from modulated synthesis: adsorption and stability studies. J Phys Chem C, 2017, 121(42): 23471 doi: 10.1021/acs.jpcc.7b07772
|
[88] |
Plonka A M, Wang Q, Gordon W O, et al. In situ probes of capture and decomposition of chemical warfare agent simulants by Zr-based metal organic frameworks. J Am Chem Soc, 2017, 139(2): 599 doi: 10.1021/jacs.6b11373
|
[89] |
De Vos A, Hendrickx K, Van Der Voort P, et al. Missing linkers: an alternative pathway to UiO-66 electronic structure engineering. Chem Mater, 2017, 29(7): 3006 doi: 10.1021/acs.chemmater.6b05444
|
[90] |
Cao J, Yang Z H, Xiong W P, et al. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis. Chem Eng J, 2018, 353: 126 doi: 10.1016/j.cej.2018.07.060
|
[91] |
Fan K, Nie W X, Wang L P, et al. Defective metal-organic frameworks incorporating iridium-based metalloligands: Sorption and dye degradation properties. Chem Eur J, 2017, 23(27): 6615 doi: 10.1002/chem.201700365
|
[92] |
Mondloch J E, Katz M J, Isley III W C, et al. Destruction of chemical warfare agents using metal-organic frameworks. Nature Mater, 2015, 14(5): 512 doi: 10.1038/nmat4238
|
[93] |
Cho K Y, Seo J Y, Kim H J, et al. Facile control of defect site density and particle size of UiO-66 for enhanced hydrolysis rates: insights into feasibility of Zr(IV)-based metal-organic framework (MOF) catalysts. Appl Catal B-Environ, 2019, 245: 635 doi: 10.1016/j.apcatb.2019.01.033
|
[94] |
C?té A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166 doi: 10.1126/science.1120411
|
[95] |
Ding S Y, Gao J, Wang Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU-1 in Suzuki-Miyaura coupling reaction. J Am Chem Soc, 2011, 133(49): 19816 doi: 10.1021/ja206846p
|
[96] |
Guan X Y, Li H, Ma Y C, et al. Chemically stable polyarylether-based covalent organic frameworks. Nature Chem, 2019, 11(6): 587 doi: 10.1038/s41557-019-0238-5
|