<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
LIU Juan-hong, ZHOU Zai-bo, WU Ai-xiang, WANG Yi-ming. Preparation and hydration mechanism of low concentration Bayer red mud filling materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1457-1464. doi: 10.13374/j.issn2095-9389.2019.11.25.001
Citation: LIU Juan-hong, ZHOU Zai-bo, WU Ai-xiang, WANG Yi-ming. Preparation and hydration mechanism of low concentration Bayer red mud filling materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1457-1464. doi: 10.13374/j.issn2095-9389.2019.11.25.001

Preparation and hydration mechanism of low concentration Bayer red mud filling materials

doi: 10.13374/j.issn2095-9389.2019.11.25.001
More Information
  • Corresponding author: E-mail: zhouzaibo@126.com
  • Received Date: 2019-11-25
  • Publish Date: 2020-11-25
  • Red mud is a solid waste produced in the process of bauxite refining alumina, with high alkali content, and its treatment methods are mainly stacking and ocean dumping, which not only occupy a large amount of cultivated land and pollute land and water sources, but also have high safety risk. The preparation of red mud-based filling materials to fill the underground goaf can improve the utilization rate of mineral resources and reduce the harm of red mud to the environment, which has the effect of killing two birds with one stone. In view of the problems of low utilization rate of bayer red mud in mine filling system, low strength, bleeding and shrinkage in filling materials slurry with low concentration, the effects of the addition ratio of fly ash, desulfurization gypsum, lime and initiator on the early strength and volume stability were studied in this paper. Scanning electron microscope- energy dispersive spectroscope (SEM-EDS) and X-ray diffraction (XRD) were used to analyze the hydration mechanism of the filling materials. The results show that when the ratio of red mud to fly ash is 4∶6, the mechanical properties of the filling material are the best. Desulfurized gypsum promotes the formation of ettringite. Lime promotes the pozzolanic effect of fly ash. The composite activator can accelerate the hydration process of red mud and fly ash. All of this enhance the red mud backfill strength. The filling materials 28 d compressive strength is 3.35 MPa, and the initial and 60 min fluidity are above 200 mm. Microscopic test results show that the hydration products of hardened paste are ettringite, lawsonite, silica aluminate gel, which fill the pores and improve the strength of slurry. Through adding activator, activating red mud activity and designing low concentration filling material, it is the direction of mass and green utilization of red mud, desulfurization gypsum and other solid wastes. The utilization ratio of solid waste of red mud filling materials reaches 92%, no bleeding, no shrinkage, and has high economic value and environmental value.

     

  • loading
  • [1]
    Khairul M A, Zanganeh J, Moghtaderi B. The composition, recycling and utilization of Bayer red mud. Resour Conserv Recycl, 2019, 141: 483 doi: 10.1016/j.resconrec.2018.11.006
    [2]
    劉曉明, 唐彬文, 尹海峰, 等. 赤泥–煤矸石基公路路面基層材料的耐久與環境性能. 工程科學學報, 2018, 40(4):438

    Liu X M, Tang B W, Yin H F, et al. Durability and environmental performance of Bayer red mud–coal gangue-based road base material. Chin J Eng, 2018, 40(4): 438
    [3]
    Liu C L, Ma S H, Zheng S L, et al. Combined treatment of red mud and coal fly ash by a hydro-chemical process. Hydrometallurgy, 2018, 175: 224 doi: 10.1016/j.hydromet.2017.11.005
    [4]
    Liu Z B, Li H X. Metallurgical process for valuable elements recovery from red mud—A review. Hydrometallurgy, 2015, 155: 29 doi: 10.1016/j.hydromet.2015.03.018
    [5]
    Wang L, Chen L, Tsang D C W, et al. Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environ Int, 2019, 133: 105247 doi: 10.1016/j.envint.2019.105247
    [6]
    柳曉, 韓躍新, 何發鈺, 等. 赤泥的危害及其綜合利用研究現狀. 金屬礦山, 2018, 47(11):7

    Liu X, Han Y X, He F Y, et al. Research status on hazards and comprehensive utilization of red mud. Met Mine, 2018, 47(11): 7
    [7]
    Liu S H, Guan X M, Zhang S S, et al. Sintered bayer red mud based ceramic bricks: Microstructure evolution and alkalis immobilization mechanism. Ceram Int, 2017, 43(15): 13004 doi: 10.1016/j.ceramint.2017.07.036
    [8]
    Lu G Z, Zhang T A, Ma L N, et al. Utilization of Bayer red mud by a calcification–carbonation method using calcium aluminate hydrate as a calcium source. Hydrometallurgy, 2019, 188: 248 doi: 10.1016/j.hydromet.2019.05.018
    [9]
    劉英, 倪文, 黃曉燕, 等. 拜耳法低鐵赤泥在電石渣-脫硫石膏體系中的水化硬化特性. 材料導報, 2016, 30(14):120

    Liu Y, Ni W, Huang X Y, et al. Characteristics of hydration and hardening red mud of Bayer process in carbide slag-flue desulfurization gypsum system. Mater Rev, 2016, 30(14): 120
    [10]
    Li Y C, Min X B, Ke Y, et al. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation. Waste Manage, 2019, 83: 202 doi: 10.1016/j.wasman.2018.11.019
    [11]
    Hu W, Nie Q K, Huang B S, et al. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. J Clean Prod, 2018, 186: 799 doi: 10.1016/j.jclepro.2018.03.086
    [12]
    高術杰, 倪文, 祝麗萍, 等. 脫硫石膏對赤泥–礦渣膠結充填料強度性能的影響. 中南大學學報: 自然科學版, 2013, 44(6):2259

    Gao S J, Ni W, Zhu L P, et al. Effect of gypsum on strength performance of cemented backfilling materials of red mud-slag system. J Cent South Univ Sci Technol, 2013, 44(6): 2259
    [13]
    陳蛟龍, 張娜, 李恒, 等. 赤泥基似膏體充填材料水化特性研究. 工程科學學報, 2017, 39(11):1640

    Chen J L, Zhang N, Li H, et al. Hydration characteristics of red-mud based paste-like backfill material. Chin J Eng, 2017, 39(11): 1640
    [14]
    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517

    Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
    [15]
    Hou C, Zhu W C, Yan B X, et al. Influence of binder content on temperature and internal strain evolution of early age cemented tailings backfill. Construct Build Mater, 2018, 189: 585 doi: 10.1016/j.conbuildmat.2018.09.032
    [16]
    Liu J H, Wu R D, Wu A X, et al. Bleeding characteristics and improving mechanism of self-flowing tailings filling slurry with low concentration. Minerals, 2017, 7(8): 131 doi: 10.3390/min7080131
    [17]
    Nath S K, Kumar S. Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer. Construct Build Mater, 2020, 233: 117294 doi: 10.1016/j.conbuildmat.2019.117294
    [18]
    Li Z F, Zhang J, Li S C, et al. Effect of different gypsums on the workability and mechanical properties of red mud–slag based grouting materials. J Clean Prod, 2020, 245: 118759 doi: 10.1016/j.jclepro.2019.118759
    [19]
    大連理工大學無機化學教研室. 無機化學. 5版. 北京: 高等教育出版社, 2006

    Department of inorganic chemistry, Dalian University of Technology. Inorganic Chemistry. 5th Ed. Beijing: Higher Education Press, 2006
    [20]
    Zhou X X, Shen J M. Micromorphology and microstructure of coal fly ash and furnace bottom slag based light-weight geopolymer. Construct Build Mater, 2020, 242: 118168 doi: 10.1016/j.conbuildmat.2020.118168
    [21]
    肖力光, 張洪磊. 新型復合早強劑對混凝土(砂漿)力學性能的影響及機理分析. 硅酸鹽通報, 2018, 37(7):2115

    Xiao L G, Zhang H L. Influence of new composite early strength agent on mechanical properties of concrete(mortar) and its mechanism analysis. Bull Chin Ceram Soc, 2018, 37(7): 2115
    [22]
    邱軼兵, 王慶平. NaSO4激發粉煤灰火山灰活性研究. 材料導報, 2013, 27(12):121 doi: 10.3969/j.issn.1005-023X.2013.12.029

    Qiu Y B, Wang Q P. Study on the pozzolanic activity of fly ash activated by NaSO4. Mater Rev, 2013, 27(12): 121 doi: 10.3969/j.issn.1005-023X.2013.12.029
    [23]
    劉鵬飛, 蘭明章, 項斌峰, 等. 羥丙基甲基纖維素醚對機噴水泥砂漿性能的影響. 新型建筑材料, 2016, 43(7):49 doi: 10.3969/j.issn.1001-702X.2016.07.013

    Liu P F, Lan M Z, Xiang B F, et al. Influence of hydroxypropyl methyl cellulose ether on properties of machine spraying mortar. New Build Mater, 2016, 43(7): 49 doi: 10.3969/j.issn.1001-702X.2016.07.013
    [24]
    姜關照, 吳愛祥, 王貽明, 等. 復合激發劑對銅爐渣活性影響及充填材料制備. 工程科學學報, 2017, 39(9):1305

    Jiang G Z, Wu A X, Wang Y M, et al. Effect of compound activator on copper slag activity and preparation of filling materials. Chin J Eng, 2017, 39(9): 1305
    [25]
    Keeley P M, Rowson N A, Johnson T P, et al. The effect of the extent of polymerization of a slag structure on the strength of alkali-activated slag binders. Int J Miner Process, 2017, 164: 37 doi: 10.1016/j.minpro.2017.05.007
    [26]
    Kwan S, La Rosa-Thompson J, Grutzeck M W. Structure and phase relations of aluminum-substituted calcium silicate hydrate. J Am Ceram Soc, 1996, 79(4): 967 doi: 10.1111/j.1151-2916.1996.tb08533.x
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (1855) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频