Citation: | LI Jin-le, LI Shan, YANG Xiao-jing, YANG Hang-lin, MA Yi-ming. Modeling and experimental analysis of micro-cutting temperature on single crystal germanium[J]. Chinese Journal of Engineering, 2020, 42(11): 1499-1506. doi: 10.13374/j.issn2095-9389.2019.11.21.003 |
[1] |
Chae J, Park S S, Freiheit T. Investigation of micro-cutting operations. Int J Mach Tools Manuf, 2006, 46(3-4): 313 doi: 10.1016/j.ijmachtools.2005.05.015
|
[2] |
張卓敏, 程強, 王志超, 等. 微納尺度傳熱. 北京: 清華大學出版社, 2016
Zhang Z M, Cheng Q, Wang Z C, et al. Nano/Microscale Heat Transfer. Beijing: Tsinghua University Press, 2016
|
[3] |
Liang Y C, Yang K, Bai Q S, et al. Modeling and experimental analysis of microburr formation considering tool edge radius and tool-tip breakage in microend milling. J Vac Sci Technol B, 2009, 27(3): 1531 doi: 10.1116/1.3046147
|
[4] |
楊曉京, 趙彪, 羅良. 基于納米劃痕的單晶鍺脆塑轉變實驗研究. 稀有金屬材料與工程, 2018, 47(10):3228
Yang X J, Zhao B, Luo L. Experimental research on brittle-ductile transition of single crystal germanium based on nano-scratch. Rare Met Mater Eng, 2018, 47(10): 3228
|
[5] |
Krahmer D M, Hameed S, Egea A J S, et al. Wear and MnS layer adhesion in uncoated cutting tools when dry and wet turning free-cutting steels. Metals, 2019, 9(5): 556 doi: 10.3390/met9050556
|
[6] |
陶文銓. 數值傳熱學. 2版. 西安: 西安交通大學出版社, 2001
Tao W Q. Numerical Heat Transfer. 2nd Ed. Xi’an: Xi’an Jiaotong University Press, 2001
|
[7] |
Ulutan D, Lazoglu I, Dinc C. Three-dimensional temperature predictions in machining processes using finite difference method. J Mater Process Technol, 2009, 209(2): 1111 doi: 10.1016/j.jmatprotec.2008.03.020
|
[8] |
戴艷俊, 吳學紅, 陶文銓. 三維不規則區域熱傳導問題無網格方法的數值模擬. 工程熱物理學報, 2011, 32(7):1173
Dai Y J, Wu X H, Tao W Q. Weighted least-squares collocation method (WLSCM) for 3-D heat conduction problems in irregular domain. J Eng Thermophys, 2011, 32(7): 1173
|
[9] |
侯鎮冰, 何紹杰, 李恕先. 固體熱傳導. 上海: 上海科學技術出版社, 1984
Hou Z B, He S J, Li S X. Heat Conduction Within a Solid. Shanghai: Shanghai Science and Technology Publishing House, 1984
|
[10] |
Dessoly V, Melkote S N, Lescalier C. Modeling and verification of cutting tool temperatures in rotary tool turning of hardened steel. Int J Mach Tools Manuf, 2004, 44(14): 1463 doi: 10.1016/j.ijmachtools.2004.05.007
|
[11] |
Tanveer A, Marla D, Kapoor S G. A thermal model to predict tool temperature in machining of Ti–6Al–4V alloy with an atomization-based cutting fluid spray system. J Manuf Sci Eng, 2017, 139(7): 071016 doi: 10.1115/1.4036123
|
[12] |
Zhang J J, Liu Z Q, Du J. Modelling and prediction of tool-chip interface temperature in hard machining of H13 steel with PVD coated tools. Int J Mach Mach Mater, 2015, 17(5): 381
|
[13] |
Mamedov A, Lazoglu I. Thermal analysis of micro milling titanium alloy Ti–6Al–4V. J Mater Process Technol, 2016, 229: 659 doi: 10.1016/j.jmatprotec.2015.10.019
|
[14] |
Silva G C, Malveira B M, Carneiro J R G, et al. Wear and thermal analysis of WC inserts in turning operations by fuzzy modeling. Procedia CIRP, 2017, 58: 523 doi: 10.1016/j.procir.2017.03.266
|
[15] |
郭開文, 代少軍, 岳建鋒. 一類變導熱系數下三維溫度場解析模型. 工程熱物理學報, 2017, 38(8):1724
Guo K W, Dai S J, Yue J F. An analytical solution for the temperature field with variable thermal conductivity. J Eng Thermophys, 2017, 38(8): 1724
|
[16] |
張士軍, 劉戰強, 劉繼剛. 用解析法計算高速切削單涂層刀具瞬態溫度分布. 機械工程學報, 2010, 46(1):187 doi: 10.3901/JME.2010.01.187
Zhang S J, Liu Z Q, Liu J G. Calculating transient temperature distribution of single-coated tool in high speed cutting. J Mech Eng, 2010, 46(1): 187 doi: 10.3901/JME.2010.01.187
|
[17] |
汪圣飛, 安晨輝, 張飛虎, 等. 磷酸二氫鉀晶體飛切過程中溫度場的分布及其對切屑形貌的影響. 光學精密工程, 2016, 24(8):1948 doi: 10.3788/OPE.20162408.1948
Wang S F, An C H, Zhang F H, et al. Thermal field distribution in fly-cutting of KDP crystal and its influence on chip morphology. Opt Precis Eng, 2016, 24(8): 1948 doi: 10.3788/OPE.20162408.1948
|
[18] |
占剛, 何林, 蔣宏婉, 等. 新型硬質合金微坑車刀切削能對比研究與預測. 工程科學學報, 2017, 39(8):1207
Zhan G, He L, Jiang H W, et al. Performance comparison and prediction of cutting energy of new cemented carbide micro-pit turning tool. Chin J Eng, 2017, 39(8): 1207
|
[19] |
岳彩旭, 都建標, 劉獻禮, 等. 考慮時變性熱強度和時變性熱量分配比的銑刀前刀面瞬態溫度場建模研究. 機械工程學報, 2019, 55(9):206 doi: 10.3901/JME.2019.09.206
Yue C X, Du J B, Liu X L, et al. Modeling research on transient temperature field of rake face on end mills considering time-varying heat intensity and time-varying distribution ratio. J Mech Eng, 2019, 55(9): 206 doi: 10.3901/JME.2019.09.206
|
[20] |
Hu C, Zhuang K J, Weng J, et al. Three-dimensional analytical modeling of cutting temperature for round insert considering semi-infinite boundary and non-uniform heat partition. Int J Mech Sci, 2019, 155: 536 doi: 10.1016/j.ijmecsci.2019.03.019
|
[21] |
張洪濟. 移動熱源熱傳導的非準穩態分析(Ⅲ). 工程熱物理學報, 1991, 12(3):294
Zhang H J. Non-quasi-steady analysis heat conduction from a moving heat source (Ⅲ). J Eng Thermophys, 1991, 12(3): 294
|
[22] |
Wakaki M, Keiei K, Shibuya T. 光學材料手冊. 周海憲, 程云芳, 譯. 北京: 化學工業出版社, 2010
Wakaki M, Keiei K, Shibuya T. Physical Properties and Data of Optical Materials. Translated by Zhou H X, Cheng Y F. Beijing: Chemical Industry Press, 2010
|
[23] |
夏曉光, 張宇. 鍺單晶的各向異性對單點金剛石切削的影響. 新技術新工藝, 2014(2):110 doi: 10.3969/j.issn.1003-5311.2014.02.034
Xia X G, Zhang Y. Effects of germanium single-crystal anisotropy in SPDT. New Technol New Process, 2014(2): 110 doi: 10.3969/j.issn.1003-5311.2014.02.034
|
[24] |
Sawangsri W, Cheng K. Investigation on partitioned distribution of cutting heat and cutting temperature in micro cutting. Int J Mech Manuf Syst, 2016, 9(2): 173
|
[25] |
Komanduri R, McGee J, Thompson R A, et al. On a methodology for establishing the machine tool system requirements for high-speed/high-throughput machining. J Eng Ind, 1985, 107(4): 316 doi: 10.1115/1.3186004
|
[26] |
Jiang F L, Liu Z Q, Yang F Z, et al. Investigations on tool temperature with heat conduction and heat convection in high-speed slot milling of Ti6Al4V. In J Adv Manuf Technol, 2018, 96(5-8): 1847 doi: 10.1007/s00170-018-1733-3
|