<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
LI Jin-le, LI Shan, YANG Xiao-jing, YANG Hang-lin, MA Yi-ming. Modeling and experimental analysis of micro-cutting temperature on single crystal germanium[J]. Chinese Journal of Engineering, 2020, 42(11): 1499-1506. doi: 10.13374/j.issn2095-9389.2019.11.21.003
Citation: LI Jin-le, LI Shan, YANG Xiao-jing, YANG Hang-lin, MA Yi-ming. Modeling and experimental analysis of micro-cutting temperature on single crystal germanium[J]. Chinese Journal of Engineering, 2020, 42(11): 1499-1506. doi: 10.13374/j.issn2095-9389.2019.11.21.003

Modeling and experimental analysis of micro-cutting temperature on single crystal germanium

doi: 10.13374/j.issn2095-9389.2019.11.21.003
More Information
  • Corresponding author: E-mail: 624814911@qq.com
  • Received Date: 2019-11-21
  • Publish Date: 2020-11-25
  • Single crystal germanium is an important infrared optical material, which is widely used in defense industry, microelectronics, and other fields. It is extremely difficult to achieve the required surface quality by conventional processing methods due to its hardness and brittleness. Practically, single-point diamond tool is used for micro-cutting. During the micro-cutting process of single crystal germanium, the change of cutting temperature leads to increased tool wear and material surface hardening, which results in poor surface quality and also reduces processing accuracy. Therefore, analyzing the micro-cutting temperature distribution of single crystal germanium has become the key to better understanding its heat transfer mechanism and for improving product quality and efficiency. Aiming to analyze heat transfer mechanism of single crystal germanium micro-cutting, the moving heat source method was used. It establishes the theoretical model with temperature rise during micro-cutting of single crystal germanium under the action of the heat source of the shear slip surface and the friction heat source of the rake face and the chip, respectively. The maximum cutting temperature of germanium at three cutting speeds, and the model was verified with the cutting temperature of homogeneous hard and brittle material single crystal silicon. Through a single-point diamond turning experiment, an infrared thermal imager was used to measure the temperature of the single crystal germanium micro-cutting process online. When experimental measurement results and the model calculation results are compared, it revealed that the maximum cutting temperature of single crystal germanium has displayed same trend under different cutting speeds, which is that the cutting temperature is directly proportional to the cutting speed. The relative error is found to be between 2.56% and 6.64%. The relative error of the maximum cutting temperature is 3.84%. The model can accurately predict the temperature field of single crystal germanium and also for similar hard and brittle materials, providing further theoretical support for analyzing its thermal effects.

     

  • loading
  • [1]
    Chae J, Park S S, Freiheit T. Investigation of micro-cutting operations. Int J Mach Tools Manuf, 2006, 46(3-4): 313 doi: 10.1016/j.ijmachtools.2005.05.015
    [2]
    張卓敏, 程強, 王志超, 等. 微納尺度傳熱. 北京: 清華大學出版社, 2016

    Zhang Z M, Cheng Q, Wang Z C, et al. Nano/Microscale Heat Transfer. Beijing: Tsinghua University Press, 2016
    [3]
    Liang Y C, Yang K, Bai Q S, et al. Modeling and experimental analysis of microburr formation considering tool edge radius and tool-tip breakage in microend milling. J Vac Sci Technol B, 2009, 27(3): 1531 doi: 10.1116/1.3046147
    [4]
    楊曉京, 趙彪, 羅良. 基于納米劃痕的單晶鍺脆塑轉變實驗研究. 稀有金屬材料與工程, 2018, 47(10):3228

    Yang X J, Zhao B, Luo L. Experimental research on brittle-ductile transition of single crystal germanium based on nano-scratch. Rare Met Mater Eng, 2018, 47(10): 3228
    [5]
    Krahmer D M, Hameed S, Egea A J S, et al. Wear and MnS layer adhesion in uncoated cutting tools when dry and wet turning free-cutting steels. Metals, 2019, 9(5): 556 doi: 10.3390/met9050556
    [6]
    陶文銓. 數值傳熱學. 2版. 西安: 西安交通大學出版社, 2001

    Tao W Q. Numerical Heat Transfer. 2nd Ed. Xi’an: Xi’an Jiaotong University Press, 2001
    [7]
    Ulutan D, Lazoglu I, Dinc C. Three-dimensional temperature predictions in machining processes using finite difference method. J Mater Process Technol, 2009, 209(2): 1111 doi: 10.1016/j.jmatprotec.2008.03.020
    [8]
    戴艷俊, 吳學紅, 陶文銓. 三維不規則區域熱傳導問題無網格方法的數值模擬. 工程熱物理學報, 2011, 32(7):1173

    Dai Y J, Wu X H, Tao W Q. Weighted least-squares collocation method (WLSCM) for 3-D heat conduction problems in irregular domain. J Eng Thermophys, 2011, 32(7): 1173
    [9]
    侯鎮冰, 何紹杰, 李恕先. 固體熱傳導. 上海: 上海科學技術出版社, 1984

    Hou Z B, He S J, Li S X. Heat Conduction Within a Solid. Shanghai: Shanghai Science and Technology Publishing House, 1984
    [10]
    Dessoly V, Melkote S N, Lescalier C. Modeling and verification of cutting tool temperatures in rotary tool turning of hardened steel. Int J Mach Tools Manuf, 2004, 44(14): 1463 doi: 10.1016/j.ijmachtools.2004.05.007
    [11]
    Tanveer A, Marla D, Kapoor S G. A thermal model to predict tool temperature in machining of Ti–6Al–4V alloy with an atomization-based cutting fluid spray system. J Manuf Sci Eng, 2017, 139(7): 071016 doi: 10.1115/1.4036123
    [12]
    Zhang J J, Liu Z Q, Du J. Modelling and prediction of tool-chip interface temperature in hard machining of H13 steel with PVD coated tools. Int J Mach Mach Mater, 2015, 17(5): 381
    [13]
    Mamedov A, Lazoglu I. Thermal analysis of micro milling titanium alloy Ti–6Al–4V. J Mater Process Technol, 2016, 229: 659 doi: 10.1016/j.jmatprotec.2015.10.019
    [14]
    Silva G C, Malveira B M, Carneiro J R G, et al. Wear and thermal analysis of WC inserts in turning operations by fuzzy modeling. Procedia CIRP, 2017, 58: 523 doi: 10.1016/j.procir.2017.03.266
    [15]
    郭開文, 代少軍, 岳建鋒. 一類變導熱系數下三維溫度場解析模型. 工程熱物理學報, 2017, 38(8):1724

    Guo K W, Dai S J, Yue J F. An analytical solution for the temperature field with variable thermal conductivity. J Eng Thermophys, 2017, 38(8): 1724
    [16]
    張士軍, 劉戰強, 劉繼剛. 用解析法計算高速切削單涂層刀具瞬態溫度分布. 機械工程學報, 2010, 46(1):187 doi: 10.3901/JME.2010.01.187

    Zhang S J, Liu Z Q, Liu J G. Calculating transient temperature distribution of single-coated tool in high speed cutting. J Mech Eng, 2010, 46(1): 187 doi: 10.3901/JME.2010.01.187
    [17]
    汪圣飛, 安晨輝, 張飛虎, 等. 磷酸二氫鉀晶體飛切過程中溫度場的分布及其對切屑形貌的影響. 光學精密工程, 2016, 24(8):1948 doi: 10.3788/OPE.20162408.1948

    Wang S F, An C H, Zhang F H, et al. Thermal field distribution in fly-cutting of KDP crystal and its influence on chip morphology. Opt Precis Eng, 2016, 24(8): 1948 doi: 10.3788/OPE.20162408.1948
    [18]
    占剛, 何林, 蔣宏婉, 等. 新型硬質合金微坑車刀切削能對比研究與預測. 工程科學學報, 2017, 39(8):1207

    Zhan G, He L, Jiang H W, et al. Performance comparison and prediction of cutting energy of new cemented carbide micro-pit turning tool. Chin J Eng, 2017, 39(8): 1207
    [19]
    岳彩旭, 都建標, 劉獻禮, 等. 考慮時變性熱強度和時變性熱量分配比的銑刀前刀面瞬態溫度場建模研究. 機械工程學報, 2019, 55(9):206 doi: 10.3901/JME.2019.09.206

    Yue C X, Du J B, Liu X L, et al. Modeling research on transient temperature field of rake face on end mills considering time-varying heat intensity and time-varying distribution ratio. J Mech Eng, 2019, 55(9): 206 doi: 10.3901/JME.2019.09.206
    [20]
    Hu C, Zhuang K J, Weng J, et al. Three-dimensional analytical modeling of cutting temperature for round insert considering semi-infinite boundary and non-uniform heat partition. Int J Mech Sci, 2019, 155: 536 doi: 10.1016/j.ijmecsci.2019.03.019
    [21]
    張洪濟. 移動熱源熱傳導的非準穩態分析(Ⅲ). 工程熱物理學報, 1991, 12(3):294

    Zhang H J. Non-quasi-steady analysis heat conduction from a moving heat source (Ⅲ). J Eng Thermophys, 1991, 12(3): 294
    [22]
    Wakaki M, Keiei K, Shibuya T. 光學材料手冊. 周海憲, 程云芳, 譯. 北京: 化學工業出版社, 2010

    Wakaki M, Keiei K, Shibuya T. Physical Properties and Data of Optical Materials. Translated by Zhou H X, Cheng Y F. Beijing: Chemical Industry Press, 2010
    [23]
    夏曉光, 張宇. 鍺單晶的各向異性對單點金剛石切削的影響. 新技術新工藝, 2014(2):110 doi: 10.3969/j.issn.1003-5311.2014.02.034

    Xia X G, Zhang Y. Effects of germanium single-crystal anisotropy in SPDT. New Technol New Process, 2014(2): 110 doi: 10.3969/j.issn.1003-5311.2014.02.034
    [24]
    Sawangsri W, Cheng K. Investigation on partitioned distribution of cutting heat and cutting temperature in micro cutting. Int J Mech Manuf Syst, 2016, 9(2): 173
    [25]
    Komanduri R, McGee J, Thompson R A, et al. On a methodology for establishing the machine tool system requirements for high-speed/high-throughput machining. J Eng Ind, 1985, 107(4): 316 doi: 10.1115/1.3186004
    [26]
    Jiang F L, Liu Z Q, Yang F Z, et al. Investigations on tool temperature with heat conduction and heat convection in high-speed slot milling of Ti6Al4V. In J Adv Manuf Technol, 2018, 96(5-8): 1847 doi: 10.1007/s00170-018-1733-3
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1530) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频