<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
ZHAO Xi, CHEN Ying-xue, ZENG Xian, GONG Xing, ZHANG Yong, YIN Zhen-guo, YAN Qing-zhi. Heat-treatment optimization and heavy liquid metal compatibility of Si-enriched F/M steel for LFR structure application[J]. Chinese Journal of Engineering, 2020, 42(11): 1488-1498. doi: 10.13374/j.issn2095-9389.2019.11.19.002
Citation: ZHAO Xi, CHEN Ying-xue, ZENG Xian, GONG Xing, ZHANG Yong, YIN Zhen-guo, YAN Qing-zhi. Heat-treatment optimization and heavy liquid metal compatibility of Si-enriched F/M steel for LFR structure application[J]. Chinese Journal of Engineering, 2020, 42(11): 1488-1498. doi: 10.13374/j.issn2095-9389.2019.11.19.002

Heat-treatment optimization and heavy liquid metal compatibility of Si-enriched F/M steel for LFR structure application

doi: 10.13374/j.issn2095-9389.2019.11.19.002
More Information
  • The lead-cooled fast reactor (LFR) is one of six reactor concepts selected in the Generation IV Technology Roadmap and is perhaps the first to be applied commercially. Because the heavy liquid metal coolant has a severe corrosion effect on the core structure, the compatibility of the heavy liquid metal coolant and structural materials is recognized as a key limitation in the design and application of the LFR. Corrosion by heavy liquid metals such as liquid lead or lead–bismuth eutectic (LBE) is a physical or physical–chemical process involving surface oxidation, dissolution of material constituents, erosion corrosion, and fretting corrosion. Corrosion by heavy liquid metal can change the microstructure, composition, and surface morphology of structural materials, which will affect their mechanical and physical properties and lead to system failure. Currently, LFR research institutes are devoting great effort to the research and development of structural materials with good high-temperature mechanical properties and excellent corrosion and irradiation resistances. In this study, a series of experiments and analyses were performed on self-developed 11Cr?1Si ferritic/martensitic (F/M) steel, including heat treatment tests, mechanical tests, corrosion tests in static lead-bismuth eutectic (LBE), and slow strain-rate tests (SSRT) in LBE. The heat treatment results show that 11Cr?1Si steel obtains a good combination of high strength and toughness after quenching at 950 ℃ and tempering at 750 ℃. 11Cr?1Si steel was found to have good LBE corrosion resistance after exposure in static LBE for 3368 h, with a sufficiently low oxidation rate and a continuous and compact surface oxide layer, which protect the base metal of 11Cr?1Si from LBE penetration. The SSRT results show that the ductility of 11Cr?1Si in contact with LBE is sensitive to temperature, with loss of ductility observed at 350 ℃ and 400 ℃, but not at 450 ℃.

     

  • loading
  • [1]
    Alemberti A. The lead fast reactor: an opportunity for the future? Engineering, 2016, 2(1): 59 doi: 10.1016/J.ENG.2016.01.022
    [2]
    Allen T R, Crawford D C. Lead-cooled fast reactor systems and the fuels and materials challenges. Sci Technol Nucl Installations, 2007: 097486
    [3]
    Allen T R, Sridharan K, Tan L, et al. Materials challenges for generation IV nuclear energy systems. Nucl Technol, 2008, 162(3): 342 doi: 10.13182/NT08-A3961
    [4]
    Fazio C, Sobolev V, Aerts A, et al. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies. 2015 Ed. Issy-les-Moulineaux: OECD, 2015
    [5]
    Zhang J S. A review of steel corrosion by liquid lead and lead–bismuth. Corros Sci, 2009, 51(6): 1207 doi: 10.1016/j.corsci.2009.03.013
    [6]
    汪家梅, Farzin Arjmand, 杜東海, 等. 壓水堆一回路主管道316L不銹鋼的電化學腐蝕行為. 工程科學學報, 2017, 39(9):1355

    Wang J M, Farzin A, Du D H, et al. Electrochemical corrosion behaviors of 316L stainless steel used in PWR primary pipes. Chin J Eng, 2017, 39(9): 1355
    [7]
    Barbier F, Benamati G, Fazio C, et al. Compatibility tests of steels in flowing liquid lead–bismuth. J Nucl Mater, 2001, 295(2-3): 149 doi: 10.1016/S0022-3115(01)00570-0
    [8]
    趙熹, 燕青之, 曾獻, 等. 熔鑄ODS鋼液態鉛鉍腐蝕行為初步研究. 中國核科學技術進展報告, 2019, 6:92

    Zhao X, Yan Q Z, Zeng X, et al. Preliminary research on corrosion behavior of vacuum smelting-casting ODS steel in lead-bismuth eutectic. Progr Rep China Nucl Sci Technol, 2019, 6: 92
    [9]
    Chernov V M, Kardashev B K, Moroz K A. Low-temperature embrittlement and fracture of metals with different crystal lattices–Dislocation mechanisms. Nucl Mater Energy, 2016, 9: 496 doi: 10.1016/j.nme.2016.02.002
    [10]
    Gabriele F D, Amore S, Scaiola C, et al. Corrosion behaviour of 12Cr-ODS steel in molten lead. Nucl Eng Des, 2014, 280: 69 doi: 10.1016/j.nucengdes.2014.09.030
    [11]
    Xu Y L, Zhang J Q, Chu F M, et al. Compatibility of 9Cr2WVTa and 12CrWTi-ODS steel with flowing Pb. Ann Rep China Inst Atom Energy, 2008: 4
    [12]
    Schroer C, Konys J. Quantification of the long-term performance of steels T91 and 316L in oxygen-containing flowing lead-bismuth eutectic at 550 ℃. J Eng Gas Turbines Power, 2010, 132(8): 082901 doi: 10.1115/1.4000364
    [13]
    Schroer C, Wedemeyer O, Novotny J, et al. Performance of 9% Cr steels in flowing lead-bismuth eutectic at 450 and 550 C, and 10–6 mass% dissolved oxygen. Nucl Eng Des, 2014, 280: 661 doi: 10.1016/j.nucengdes.2014.01.023
    [14]
    Zhang J S. Long-term behaviors of oxide layer in liquid lead–bismuth eutectic (LBE), Part I: model development and validation. Oxid Met, 2013, 80(5-6): 669 doi: 10.1007/s11085-013-9450-7
    [15]
    Ye C Q, Vogt J B, Serre I P. Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: The role of loading rate and of the oxygen content in the liquid metal. Mater Sci Eng A, 2014, 608: 242 doi: 10.1016/j.msea.2014.04.082
    [16]
    Kolman D G. A review of recent advances in the understanding of liquid metal embrittlement. Corrosion, 2019, 75(1): 42 doi: 10.5006/2904
    [17]
    Long B, Tong Z, Groschel F, et al. Liquid Pb–Bi embrittlement effects on the T91 steel after different heat treatments. J Nucl Mater, 2008, 377(1): 219 doi: 10.1016/j.jnucmat.2008.02.050
    [18]
    Van den Bosch J, Bosch R W, Sapundjiev D, et al. Liquid metal embrittlement susceptibility of ferritic–martensitic steel in liquid lead alloys. J Nucl Mater, 2008, 376(3): 322 doi: 10.1016/j.jnucmat.2008.02.008
    [19]
    Auger T, Lorang G. Liquid metal embrittlement susceptibility of T91 steel by lead–bismuth. Scripta Mater, 2005, 52(12): 1323 doi: 10.1016/j.scriptamat.2005.02.027
    [20]
    Van den Bosch J, Coen G, Hosemann P, et al. On the LME susceptibility of Si enriched steels. J Nucl Mater, 2012, 429(1-3): 105 doi: 10.1016/j.jnucmat.2012.05.017
    [21]
    楊旭, 廖波, 劉堅, 等. 中國低活化馬氏體鋼在液態Pb–Bi中的脆化現象. 金屬學報, 2017, 53(5):513 doi: 10.11900/0412.1961.2016.00576

    Yang X, Liao B, Liu J, et al. Embrittlement phenomenon of China low activation martensitic steel in liquid Pb–Bi. Acta Metall Sin, 2017, 53(5): 513 doi: 10.11900/0412.1961.2016.00576
    [22]
    Gong X, Marmy P, Qin L, et al. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr–1Mo steel under low cycle fatigue in lead–bismuth eutectic at 160–450 ℃. J Nucl Mater, 2016, 468: 289 doi: 10.1016/j.jnucmat.2015.06.021
    [23]
    Chen Y X, Yan Q Z, Zhang X X, et al. Microstructure characteristics and properties of yttrium-bearing 9Cr ferritic-martensitic steel cladding tubes. Mater Res Express, 2019, 6(9): 0965c6 doi: 10.1088/2053-1591/ab332e
    [24]
    Dai Y, Long B, Groeschel F. Slow strain rate tensile tests on T91 in static lead–bismuth eutectic. J Nucl Mater, 2006, 356(1-3): 222 doi: 10.1016/j.jnucmat.2006.05.039
    [25]
    Shchukin E D. Physical–chemical mechanics in the studies of Peter A. Rehbinder and his school. Colloids Surf A, 1999, 149(1-3): 529 doi: 10.1016/S0927-7757(98)00607-4
    [26]
    Klecka J, Gabriele F D, Hojna A. Mechanical properties of the steel T91 in contact with lead. Nucl Eng Des, 2015, 283: 131 doi: 10.1016/j.nucengdes.2014.10.004
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article views (2115) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频