Citation: | ZHANG Xiao-feng, WAN Ya-xiong, WU Xue-jun, KAN Zhong-wei, HUANG Zhen-yi. Research progress toward hydrogen embrittlement microstructure mechanism in Fe–Mn–(Al)–C high-strength-and-toughness steel[J]. Chinese Journal of Engineering, 2020, 42(8): 949-962. doi: 10.13374/j.issn2095-9389.2019.11.05.005 |
[1] |
Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: a review. <italic>Int J Hydrogen Energy</italic>, 2018, 43(46): 21603 doi: 10.1016/j.ijhydene.2018.09.201
|
[2] |
Liu Q L, Zhou Q J, Venezuela J, et al. Hydrogen influence on some advanced high-strength steels. <italic>Corros Sci</italic>, 2017, 125: 114 doi: 10.1016/j.corsci.2017.06.012
|
[3] |
Loidl M, Kolk O, Veith S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels. <italic>Materialwissenschaft Und Werkstofftechnik</italic>, 2011, 42(12): 1105 doi: 10.1002/mawe.201100917
|
[4] |
Shin S E, Lee S J, Nambu S, et al. Hydrogen embrittlement in multilayer steel consisting of martensitic and twinning induced plasticity steels. <italic>Mater Sci Eng A</italic>, 2019, 756: 508 doi: 10.1016/j.msea.2019.04.085
|
[5] |
Koyama M, Akiyama E, Tsuzaki K. Effect of hydrogen content on the embrittlement in a Fe?Mn?C twinning-induced plasticity steel. <italic>Corros Sci</italic>, 2012, 59: 277 doi: 10.1016/j.corsci.2012.03.009
|
[6] |
De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels. <italic>Acta Mater</italic>, 2018, 142: 283 doi: 10.1016/j.actamat.2017.06.046
|
[7] |
Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel. <italic>Acta Mater</italic>, 2012, 60(16): 5791 doi: 10.1016/j.actamat.2012.07.018
|
[8] |
Hong S, Lee J, Lee B J, et al. Effects of intergranular carbide precipitation on delayed fracture behavior in three twinning induced plasticity (TWIP) steels. <italic>Mater Sci Eng A</italic>, 2013, 587: 85 doi: 10.1016/j.msea.2013.08.063
|
[9] |
Bracke L, Kestens L, Penning J. Direct observation of the twinning mechanism in an austenitic Fe?Mn?C steel. <italic>Scripta Mater</italic>, 2009, 61(2): 220 doi: 10.1016/j.scriptamat.2009.03.045
|
[10] |
Chen S P, Rana R, Haldar A, et al. Current state of Fe?Mn?Al?C low density steels. <italic>Prog Mater Sci</italic>, 2017, 89: 345 doi: 10.1016/j.pmatsci.2017.05.002
|
[11] |
Scott C, Allain S, Faral M, et al. The development of a new Fe?Mn?C austenitic steel for automotive applications. <italic>Rev Met Paris</italic>, 2006, 103(6): 293 doi: 10.1051/metal:2006142
|
[12] |
Chen L, Lee S J, De Cooman B C. Mechanical properties of H-charged Fe?18Mn?1.5Al?0.6C TWIP steel. <italic>ISIJ Int</italic>, 2012, 52(9): 1670 doi: 10.2355/isijinternational.52.1670
|
[13] |
Koyama M, Akiyama E, Lee Y K, et al. Overview of hydrogen embrittlement in high-Mn steels. <italic>Int J Hydrogen Energy</italic>, 2017, 42(17): 12706 doi: 10.1016/j.ijhydene.2017.02.214
|
[14] |
Lynch S P. Hydrogen embrittlement (HE) phenomena and mechanisms // Stress Corrosion Cracking. Cambridge: Woodhead Publishing, 2011
|
[15] |
Nagumo M, Takai K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: overview. <italic>Acta Mater</italic>, 2019, 165: 722 doi: 10.1016/j.actamat.2018.12.013
|
[16] |
Doshida T, Takai K. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content. <italic>Acta Mater</italic>, 2014, 79: 93 doi: 10.1016/j.actamat.2014.07.008
|
[17] |
Lovicu G, Bottazzi M, D'Aiuto F, et al. Hydrogen embrittlement of automotive advanced high-strength steels. <italic>Metall Mater Trans A</italic>, 2012, 43(11): 4075 doi: 10.1007/s11661-012-1280-8
|
[18] |
Tian X, Li H, Zhang Y S. Effect of Al content on stacking fault energy in austenitic Fe?Mn?Al?C alloys. <italic>J Mater Sci</italic>, 2008, 43(18): 6214 doi: 10.1007/s10853-008-2919-0
|
[19] |
Park K T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition. <italic>Mater Sci Eng A</italic>, 2010, 527(16-17): 3651 doi: 10.1016/j.msea.2010.02.058
|
[20] |
Kim M S, Kang Y B. Development of thermodynamic database for high Mn–high Al steels: Phase equilibria in the Fe?Mn?Al?C system by experiment and thermodynamic modeling. <italic>Calphad</italic>, 2015, 51: 89 doi: 10.1016/j.calphad.2015.08.004
|
[21] |
Lu T, Niu G J, Xu Y P, et al. Molecular dynamics study of the diffusion properties of H in Fe with point defects. <italic>Fusion Eng Des</italic>, 2016, 113: 340 doi: 10.1016/j.fusengdes.2016.06.044
|
[22] |
何洋. 奧氏體鋼中氫的擴散與聚集行為的計算研究[學位論文]. 北京: 中國石油大學, 2017
He Y. First-Principle Study on Diffusion and Aggregation Behavior of Hydrogen Atoms in Austenite Steel [Dissertation]. Beijing: China University of Petroleum, 2017
|
[23] |
Hirata K, Iikubo S, Koyama M, et al. First-principles study on hydrogen diffusivity in BCC, FCC, and HCP iron. <italic>Metall Mater Trans A</italic>, 2018, 49(10): 5015 doi: 10.1007/s11661-018-4815-9
|
[24] |
Counts W A, Wolverton C, Gibala R. First-principles energetics of hydrogen traps in α-Fe: Point defects. <italic>Acta Mater</italic>, 2010, 58(14): 4730 doi: 10.1016/j.actamat.2010.05.010
|
[25] |
He Y, Li Y J, Chen C F, et al. Diffusion coefficient of hydrogen interstitial atom in α-Fe, γ-Fe and ε-Fe crystals by first-principle calculations. <italic>Int J Hydrogen Energy</italic>, 2017, 42(44): 27438 doi: 10.1016/j.ijhydene.2017.08.212
|
[26] |
Jiang D E, Carter E A. Diffusion of interstitial hydrogen into and through bcc Fe from first principles. <italic>Phys Rev B</italic>, 2004, 70(6): 064102 doi: 10.1103/PhysRevB.70.064102
|
[27] |
Li X, Gao C, Xiong X L, et al. Hydrogen diffusion in α-Fe under an applied 3-axis strain: a quantum manifestation. <italic>Int J Hydrogen Energy</italic>, 2015, 40(32): 10340 doi: 10.1016/j.ijhydene.2015.06.089
|
[28] |
Koyama M, Abe Y, Tsuzaki K. Split and shift of ε-martensite peak in an X-ray diffraction profile during hydrogen desorption: a geometric effect of atomic sequence. <italic>ISIJ Int</italic>, 2018, 58(9): 1745 doi: 10.2355/isijinternational.ISIJINT-2018-260
|
[29] |
Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe?27Mn?12Al?0.8C duplex steel in association with ordered phases at ambient temperature. <italic>Mater Sci Eng A</italic>, 2013, 586: 276 doi: 10.1016/j.msea.2013.07.094
|
[30] |
章小峰, 李家星, 萬亞雄, 等. 低密度鋼中有序析出相的研究進展. 材料導報, 2019, 33(23):3979 doi: 10.11896/cldb.18120211
Zhang X F, Li J X, Wan Y X, et al. Research progress of ordered precipitates in low-density steels. <italic>Mater Rev</italic>, 2019, 33(23): 3979 doi: 10.11896/cldb.18120211
|
[31] |
Zhang G K, Huang G Q, Hu M J, et al. Stability and clusterization of hydrogen-vacancy complexes in B2-FeAl: insight from hydrogen embrittlement. <italic>RSC Adv</italic>, 2017, 7(18): 11094 doi: 10.1039/C6RA27936H
|
[32] |
Shu X L, Hu W Y, Xiao H N, et al. Vacancies and antisites in B2 FeAl and DO<sub>3</sub> Fe<sub>3</sub>Al with a modified analytic EAM model. <italic>J Mater Sci Technol</italic>, 2001, 17(6): 601
|
[33] |
黃廣棋, 張桂凱, 羅朝以, 等. Fe?Al金屬間化合物氫脆效應研究現狀. 材料導報, 2018, 32(11):1878 doi: 10.11896/j.issn.1005-023X.2018.11.015
Huang G Q, Zhang G K, Luo Z Y, et al. A review on hydrogen embrittlement of Fe?Al intermetallics. <italic>Mater Rev</italic>, 2018, 32(11): 1878 doi: 10.11896/j.issn.1005-023X.2018.11.015
|
[34] |
González E A, Jasen P V, Brizuela G, et al. The effect of interstitial hydrogen on the electronic structure of the B2 FeAl alloy. <italic>Phys Status Solidi B</italic>, 2007, 244(10): 3684 doi: 10.1002/pssb.200743076
|
[35] |
Curtze S, Kuokkala V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. <italic>Acta Mater</italic>, 2010, 58(15): 5129 doi: 10.1016/j.actamat.2010.05.049
|
[36] |
Ferreira P J, Mullner P. A thermodynamic model for the stacking-fault energy. <italic>Acta Mater</italic>, 1998, 46(13): 4479 doi: 10.1016/S1359-6454(98)00155-4
|
[37] |
Mahajan S, Chin G Y. Twin-slip, twin-twin and slip-twin interactions in Co-8wt.% Fe alloy single crystals. <italic>Acta Metall</italic>, 1973, 21(2): 173 doi: 10.1016/0001-6160(73)90059-X
|
[38] |
Koyama M, Akiyama E, Tsuzaki K, et al. Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. <italic>Acta Mater</italic>, 2013, 61(12): 4607 doi: 10.1016/j.actamat.2013.04.030
|
[39] |
Du Y A, Ismer L, Rogal J, et al. First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe. <italic>Phys Rev B</italic>, 2011, 84(14): 144121 doi: 10.1103/PhysRevB.84.144121
|
[40] |
Lee S M, Park I J, Jung J G, et al. The effect of Si on hydrogen embrittlement of Fe?18Mn?0.6C?<italic>x</italic>Si twinning-induced plasticity steels. <italic>Acta Mater</italic>, 2016, 103: 264 doi: 10.1016/j.actamat.2015.10.015
|
[41] |
Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe?Mn?C TWIP steels. <italic>Corros Sci</italic>, 2014, 82: 218 doi: 10.1016/j.corsci.2014.01.022
|
[42] |
Malard B, Remy B, Scott C, et al. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe?Mn?C steel studied by small-angle neutron scattering. <italic>Mater Sci Eng A</italic>, 2012, 536: 110 doi: 10.1016/j.msea.2011.12.080
|
[43] |
Kwon Y J, Lee T, Lee J, et al. Role of Cu on hydrogen embrittlement behavior in Fe?Mn?C?Cu TWIP steel. <italic>Int J Hydrogen Energy</italic>, 2015, 40(23): 7409 doi: 10.1016/j.ijhydene.2015.04.022
|
[44] |
Gangloff R P, Somerday B P. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. Cambridge: Woodhead Publishing, 2012
|
[45] |
Toribio J, Kharin V. Hydrogen transport to fracture sites in metals and alloys: multiphysics modelling. <italic>Procedia Struct Integrity</italic>, 2017, 5: 1291 doi: 10.1016/j.prostr.2017.07.112
|
[46] |
Oriani R A. The diffusion and trapping of hydrogen in steel. <italic>Acta Metall</italic>, 1970, 18(1): 147 doi: 10.1016/0001-6160(70)90078-7
|
[47] |
Krom A H M, Bakker A. Hydrogen trapping models in steel. <italic>Metall Mater Trans B</italic>, 2000, 31(6): 1475 doi: 10.1007/s11663-000-0032-0
|
[48] |
Maroef I, Olson D L, Eberhart M, et al. Hydrogen trapping in ferritic steel weld metal. <italic>Int Mater Rev</italic>, 2002, 47(4): 191 doi: 10.1179/095066002225006548
|
[49] |
Bai Y, Momotani Y, Chen M C, et al. Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel. <italic>Mater Sci Eng A</italic>, 2016, 651: 935 doi: 10.1016/j.msea.2015.11.017
|
[50] |
Choo W Y, Lee J Y. Thermal analysis of trapped hydrogen in pure iron. <italic>Metall Trans A</italic>, 1982, 13(1): 135 doi: 10.1007/BF02642424
|
[51] |
Koyama M, Springer H, Merzlikin S V, et al. Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe?Mn?Al?C light weight austenitic steel. <italic>Int J Hydrogen Energy</italic>, 2014, 39(9): 4634 doi: 10.1016/j.ijhydene.2013.12.171
|
[52] |
So K H, Kim J S, Chun Y S, et al. Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe?18Mn?1.5Al?0.6C TWIP steel. <italic>ISIJ Int</italic>, 2009, 49(12): 1952 doi: 10.2355/isijinternational.49.1952
|
[53] |
Thomas R L S, Li D M, Gangloff R P, et al. Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength AERMET 100 steel. <italic>Metall Mater Trans A</italic>, 2002, 33(7): 1991 doi: 10.1007/s11661-002-0032-6
|
[54] |
Bal B, Koyama M, Gerstein G, et al. Effect of strain rate on hydrogen embrittlement susceptibility of twinning-induced plasticity steel pre-charged with high-pressure hydrogen gas. <italic>Int J Hydrogen Energy</italic>, 2016, 41(34): 15362 doi: 10.1016/j.ijhydene.2016.06.259
|
[55] |
Casillas G, Gazder A A, Pereloma E V, et al. Evidencing extrinsic stacking faults in twinning-induced plasticity steel. <italic>Mater Charact</italic>, 2017, 123: 275 doi: 10.1016/j.matchar.2016.11.039
|
[56] |
Khedr M, Li W, Jin X J. Studying hydrogen embrittlement in nano-twinned polycrystalline Fe−12.5Mn−1.2C austenitic steel // TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings. Phoenix, 2018: 113
|
[57] |
Koyama M, Akiyama E, Tsuzaki K. Hydrogen embrittlement in Al-added twinning-induced plasticity steels evaluated by tensile tests during hydrogen charging. <italic>ISIJ Int</italic>, 2012, 52(12): 2283 doi: 10.2355/isijinternational.52.2283
|
[58] |
Chun Y S, Park K T, Lee C S. Delayed static failure of twinning-induced plasticity steels. <italic>Scripta Mater</italic>, 2012, 66(12): 960 doi: 10.1016/j.scriptamat.2012.02.038
|
[59] |
Chin K G, Kang C Y, Shin S Y, et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. <italic>Mater Sci Eng A</italic>, 2011, 528(6): 2922 doi: 10.1016/j.msea.2010.12.085
|
[60] |
Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. <italic>Scripta Mater</italic>, 2013, 68(6): 343 doi: 10.1016/j.scriptamat.2012.08.038
|
[61] |
Rao V S. Some observations on the hydrogen embrittlement of Fe<sub>3</sub>Al?Fe<sub>3</sub>AlC intermetallic compounds. <italic>Mater Res Bull</italic>, 2004, 39(2): 169 doi: 10.1016/j.materresbull.2003.10.006
|
[62] |
Timmerscheidt T A, Dey P, Bogdanovski D, et al. The role of κ-carbides as hydrogen traps in high-Mn steels. <italic>Metals</italic>, 2017, 7(7): 264 doi: 10.3390/met7070264
|
[63] |
Turk A, Martín D S, Rivera-Díaz-del-Castillo P E J, et al. Correlation between vanadium carbide size and hydrogen trapping in ferritic steel. <italic>Scri Mater</italic>, 2018, 152: 112
|
[64] |
Counts W, Wolverton C, Gibala R. Binding of multiple H atoms to solute atoms in bcc Fe using first principles. <italic>Acta Mater</italic>, 2011, 59(14): 5812 doi: 10.1016/j.actamat.2011.05.058
|
[65] |
Marchi C S, Somerday B P, Robinson S L. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures. <italic>Int J Hydrogen Energy</italic>, 2007, 32(1): 100 doi: 10.1016/j.ijhydene.2006.05.008
|
[66] |
Martin M L, Dadfarnia M, Nagao A, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. <italic>Acta Mater</italic>, 2019, 165: 734 doi: 10.1016/j.actamat.2018.12.014
|
[67] |
Matsumoto R, Taketomi S, Matsumoto S, et al. Atomistic simulations of hydrogen embrittlement. <italic>Int J Hydrogen Energy</italic>, 2009, 34(23): 9576 doi: 10.1016/j.ijhydene.2009.09.052
|
[68] |
Song J, Curtin W A. Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system. <italic>Acta Mater</italic>, 2014, 68: 61 doi: 10.1016/j.actamat.2014.01.008
|
[69] |
解德剛, 李蒙, 單智偉. 氫與金屬的微觀交互作用研究進展. 中國材料進展, 2018, 37(3):215
Xie D G, Li M, Shan Z W. Review on hydrogen-microstructure interaction in metals. <italic>Mater China</italic>, 2018, 37(3): 215
|
[70] |
Chida T, Hagihara Y, Akiyama E, et al. Comparison of constant load, SSRT and CSRT methods for hydrogen embrittlement evaluation using round bar specimens of high strength steels. <italic>Tetsu-to-Hagane</italic>, 2014, 100(10): 1298 doi: 10.2355/tetsutohagane.100.1298
|
[71] |
Song S W, Kim J N, Seo H J, et al. Effects of carbon content on the tensile and fatigue properties in hydrogen-charged Fe?17Mn?<italic>x</italic>C steels: the opposing trends. <italic>Mater Sci Eng A</italic>, 2018, 724: 469 doi: 10.1016/j.msea.2018.03.117
|
[72] |
Li X C, Liu Y N, Yu Y, et al. Helium defects interactions and mechanism of helium bubble growth in tungsten: a molecular dynamics simulation. <italic>J Nucl Mater</italic>, 2014, 451(1-3): 356
|
[73] |
Ismer L, Hickel T, Neugebauer J. Ab initio study of the solubility and kinetics of hydrogen in austenitic high Mn steels. <italic>Phys Rev B</italic>, 2010, 81(9): 094111 doi: 10.1103/PhysRevB.81.094111
|
[74] |
Jiang Y F, Zhang B, Zhou Y, et al. Atom probe tomographic observation of hydrogen trapping at carbides/ferrite interfaces for a high strength steel. <italic>J Mater Sci Technol</italic>, 2018, 34(8): 1344 doi: 10.1016/j.jmst.2017.11.008
|
[75] |
Ishikawa N, Sueyoshi H, Nagao A. Hydrogen microprint analysis on the effect of dislocations on grain boundary hydrogen distribution in steels. <italic>ISIJ Int</italic>, 2016, 56(3): 413 doi: 10.2355/isijinternational.ISIJINT-2015-329
|