<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
ZHANG Xiao-feng, WAN Ya-xiong, WU Xue-jun, KAN Zhong-wei, HUANG Zhen-yi. Research progress toward hydrogen embrittlement microstructure mechanism in Fe–Mn–(Al)–C high-strength-and-toughness steel[J]. Chinese Journal of Engineering, 2020, 42(8): 949-962. doi: 10.13374/j.issn2095-9389.2019.11.05.005
Citation: ZHANG Xiao-feng, WAN Ya-xiong, WU Xue-jun, KAN Zhong-wei, HUANG Zhen-yi. Research progress toward hydrogen embrittlement microstructure mechanism in Fe–Mn–(Al)–C high-strength-and-toughness steel[J]. Chinese Journal of Engineering, 2020, 42(8): 949-962. doi: 10.13374/j.issn2095-9389.2019.11.05.005

Research progress toward hydrogen embrittlement microstructure mechanism in Fe–Mn–(Al)–C high-strength-and-toughness steel

doi: 10.13374/j.issn2095-9389.2019.11.05.005
More Information
  • Corresponding author: E-mail: egzxf@ahut.edu.cn
  • Received Date: 2019-11-05
  • Publish Date: 2020-09-11
  • With the rapid development of the automobile industry, the development and application of lightweight automobile steel are increasingly extensive. The second- and third-generation automobile steels with a tensile strength of over 1000 MPa are usually of duplex structure. Through solid solution strengthening, precipitation, deformation, fine grain strengthening, and other strengthening methods, a large number of defects are formed in the matrix, which makes the steel more sensitive to hydrogen in the service process and prone to hydrogen embrittlement under very small hydrogen dissolution conditions. The high-Mn content steels Fe?Mn?C and Fe?Mn?Al?C steels have high stacking fault energy, which not only influences their strength and toughness but also significantly affects their service performance. Based on the composition of twinning-induced plasticity (TWIP) steel of the Fe?Mn?C system, adding a small amount of Al element to form Fe?Mn?(Al)?C steel can not only reduce the steel density and improve the steel strength and toughness but also change the steel microstructure to a certain extent; the effect on the microstructure reduces the steel susceptibility to hydrogen embrittlement. However, when the Al content is high, low-density steel with a more complex structure is formed, and the precipitates are more, which leads to a more significant sensitivity to hydrogen embrittlement. In this paper, the permeation, dissolution, and diffusion behavior of H in Fe?Mn?(Al)?C high-strength-and-toughness-steel; the interaction between H and the matrix structure, the precipitated phase, and lattice defects; the model of H in steel; the hydrogen embrittlement mechanism; and the methods of hydrogen embrittlement evaluation were summarized based on the structure, second phase, and crystal defects of Fe?Mn?(Al)?C high-strength-and-toughness steel. The related research work and the latest developments of the hydrogen embrittlement of Fe?Mn?(Al)?C high-strength-and-toughness steel were reviewed. The development direction of the hydrogen embrittlement microstructure mechanism of high-strength-and-toughness steel was revealed by combining first-principle calculations, molecular dynamics simulation, and physical experiments such as hydrogen atom microprinting technology and three-dimensional atomic probe analysis.

     

  • loading
  • [1]
    Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: a review. <italic>Int J Hydrogen Energy</italic>, 2018, 43(46): 21603 doi: 10.1016/j.ijhydene.2018.09.201
    [2]
    Liu Q L, Zhou Q J, Venezuela J, et al. Hydrogen influence on some advanced high-strength steels. <italic>Corros Sci</italic>, 2017, 125: 114 doi: 10.1016/j.corsci.2017.06.012
    [3]
    Loidl M, Kolk O, Veith S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels. <italic>Materialwissenschaft Und Werkstofftechnik</italic>, 2011, 42(12): 1105 doi: 10.1002/mawe.201100917
    [4]
    Shin S E, Lee S J, Nambu S, et al. Hydrogen embrittlement in multilayer steel consisting of martensitic and twinning induced plasticity steels. <italic>Mater Sci Eng A</italic>, 2019, 756: 508 doi: 10.1016/j.msea.2019.04.085
    [5]
    Koyama M, Akiyama E, Tsuzaki K. Effect of hydrogen content on the embrittlement in a Fe?Mn?C twinning-induced plasticity steel. <italic>Corros Sci</italic>, 2012, 59: 277 doi: 10.1016/j.corsci.2012.03.009
    [6]
    De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels. <italic>Acta Mater</italic>, 2018, 142: 283 doi: 10.1016/j.actamat.2017.06.046
    [7]
    Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel. <italic>Acta Mater</italic>, 2012, 60(16): 5791 doi: 10.1016/j.actamat.2012.07.018
    [8]
    Hong S, Lee J, Lee B J, et al. Effects of intergranular carbide precipitation on delayed fracture behavior in three twinning induced plasticity (TWIP) steels. <italic>Mater Sci Eng A</italic>, 2013, 587: 85 doi: 10.1016/j.msea.2013.08.063
    [9]
    Bracke L, Kestens L, Penning J. Direct observation of the twinning mechanism in an austenitic Fe?Mn?C steel. <italic>Scripta Mater</italic>, 2009, 61(2): 220 doi: 10.1016/j.scriptamat.2009.03.045
    [10]
    Chen S P, Rana R, Haldar A, et al. Current state of Fe?Mn?Al?C low density steels. <italic>Prog Mater Sci</italic>, 2017, 89: 345 doi: 10.1016/j.pmatsci.2017.05.002
    [11]
    Scott C, Allain S, Faral M, et al. The development of a new Fe?Mn?C austenitic steel for automotive applications. <italic>Rev Met Paris</italic>, 2006, 103(6): 293 doi: 10.1051/metal:2006142
    [12]
    Chen L, Lee S J, De Cooman B C. Mechanical properties of H-charged Fe?18Mn?1.5Al?0.6C TWIP steel. <italic>ISIJ Int</italic>, 2012, 52(9): 1670 doi: 10.2355/isijinternational.52.1670
    [13]
    Koyama M, Akiyama E, Lee Y K, et al. Overview of hydrogen embrittlement in high-Mn steels. <italic>Int J Hydrogen Energy</italic>, 2017, 42(17): 12706 doi: 10.1016/j.ijhydene.2017.02.214
    [14]
    Lynch S P. Hydrogen embrittlement (HE) phenomena and mechanisms // Stress Corrosion Cracking. Cambridge: Woodhead Publishing, 2011
    [15]
    Nagumo M, Takai K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: overview. <italic>Acta Mater</italic>, 2019, 165: 722 doi: 10.1016/j.actamat.2018.12.013
    [16]
    Doshida T, Takai K. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content. <italic>Acta Mater</italic>, 2014, 79: 93 doi: 10.1016/j.actamat.2014.07.008
    [17]
    Lovicu G, Bottazzi M, D'Aiuto F, et al. Hydrogen embrittlement of automotive advanced high-strength steels. <italic>Metall Mater Trans A</italic>, 2012, 43(11): 4075 doi: 10.1007/s11661-012-1280-8
    [18]
    Tian X, Li H, Zhang Y S. Effect of Al content on stacking fault energy in austenitic Fe?Mn?Al?C alloys. <italic>J Mater Sci</italic>, 2008, 43(18): 6214 doi: 10.1007/s10853-008-2919-0
    [19]
    Park K T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition. <italic>Mater Sci Eng A</italic>, 2010, 527(16-17): 3651 doi: 10.1016/j.msea.2010.02.058
    [20]
    Kim M S, Kang Y B. Development of thermodynamic database for high Mn–high Al steels: Phase equilibria in the Fe?Mn?Al?C system by experiment and thermodynamic modeling. <italic>Calphad</italic>, 2015, 51: 89 doi: 10.1016/j.calphad.2015.08.004
    [21]
    Lu T, Niu G J, Xu Y P, et al. Molecular dynamics study of the diffusion properties of H in Fe with point defects. <italic>Fusion Eng Des</italic>, 2016, 113: 340 doi: 10.1016/j.fusengdes.2016.06.044
    [22]
    何洋. 奧氏體鋼中氫的擴散與聚集行為的計算研究[學位論文]. 北京: 中國石油大學, 2017

    He Y. First-Principle Study on Diffusion and Aggregation Behavior of Hydrogen Atoms in Austenite Steel [Dissertation]. Beijing: China University of Petroleum, 2017
    [23]
    Hirata K, Iikubo S, Koyama M, et al. First-principles study on hydrogen diffusivity in BCC, FCC, and HCP iron. <italic>Metall Mater Trans A</italic>, 2018, 49(10): 5015 doi: 10.1007/s11661-018-4815-9
    [24]
    Counts W A, Wolverton C, Gibala R. First-principles energetics of hydrogen traps in α-Fe: Point defects. <italic>Acta Mater</italic>, 2010, 58(14): 4730 doi: 10.1016/j.actamat.2010.05.010
    [25]
    He Y, Li Y J, Chen C F, et al. Diffusion coefficient of hydrogen interstitial atom in α-Fe, γ-Fe and ε-Fe crystals by first-principle calculations. <italic>Int J Hydrogen Energy</italic>, 2017, 42(44): 27438 doi: 10.1016/j.ijhydene.2017.08.212
    [26]
    Jiang D E, Carter E A. Diffusion of interstitial hydrogen into and through bcc Fe from first principles. <italic>Phys Rev B</italic>, 2004, 70(6): 064102 doi: 10.1103/PhysRevB.70.064102
    [27]
    Li X, Gao C, Xiong X L, et al. Hydrogen diffusion in α-Fe under an applied 3-axis strain: a quantum manifestation. <italic>Int J Hydrogen Energy</italic>, 2015, 40(32): 10340 doi: 10.1016/j.ijhydene.2015.06.089
    [28]
    Koyama M, Abe Y, Tsuzaki K. Split and shift of ε-martensite peak in an X-ray diffraction profile during hydrogen desorption: a geometric effect of atomic sequence. <italic>ISIJ Int</italic>, 2018, 58(9): 1745 doi: 10.2355/isijinternational.ISIJINT-2018-260
    [29]
    Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe?27Mn?12Al?0.8C duplex steel in association with ordered phases at ambient temperature. <italic>Mater Sci Eng A</italic>, 2013, 586: 276 doi: 10.1016/j.msea.2013.07.094
    [30]
    章小峰, 李家星, 萬亞雄, 等. 低密度鋼中有序析出相的研究進展. 材料導報, 2019, 33(23):3979 doi: 10.11896/cldb.18120211

    Zhang X F, Li J X, Wan Y X, et al. Research progress of ordered precipitates in low-density steels. <italic>Mater Rev</italic>, 2019, 33(23): 3979 doi: 10.11896/cldb.18120211
    [31]
    Zhang G K, Huang G Q, Hu M J, et al. Stability and clusterization of hydrogen-vacancy complexes in B2-FeAl: insight from hydrogen embrittlement. <italic>RSC Adv</italic>, 2017, 7(18): 11094 doi: 10.1039/C6RA27936H
    [32]
    Shu X L, Hu W Y, Xiao H N, et al. Vacancies and antisites in B2 FeAl and DO<sub>3</sub> Fe<sub>3</sub>Al with a modified analytic EAM model. <italic>J Mater Sci Technol</italic>, 2001, 17(6): 601
    [33]
    黃廣棋, 張桂凱, 羅朝以, 等. Fe?Al金屬間化合物氫脆效應研究現狀. 材料導報, 2018, 32(11):1878 doi: 10.11896/j.issn.1005-023X.2018.11.015

    Huang G Q, Zhang G K, Luo Z Y, et al. A review on hydrogen embrittlement of Fe?Al intermetallics. <italic>Mater Rev</italic>, 2018, 32(11): 1878 doi: 10.11896/j.issn.1005-023X.2018.11.015
    [34]
    González E A, Jasen P V, Brizuela G, et al. The effect of interstitial hydrogen on the electronic structure of the B2 FeAl alloy. <italic>Phys Status Solidi B</italic>, 2007, 244(10): 3684 doi: 10.1002/pssb.200743076
    [35]
    Curtze S, Kuokkala V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. <italic>Acta Mater</italic>, 2010, 58(15): 5129 doi: 10.1016/j.actamat.2010.05.049
    [36]
    Ferreira P J, Mullner P. A thermodynamic model for the stacking-fault energy. <italic>Acta Mater</italic>, 1998, 46(13): 4479 doi: 10.1016/S1359-6454(98)00155-4
    [37]
    Mahajan S, Chin G Y. Twin-slip, twin-twin and slip-twin interactions in Co-8wt.% Fe alloy single crystals. <italic>Acta Metall</italic>, 1973, 21(2): 173 doi: 10.1016/0001-6160(73)90059-X
    [38]
    Koyama M, Akiyama E, Tsuzaki K, et al. Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. <italic>Acta Mater</italic>, 2013, 61(12): 4607 doi: 10.1016/j.actamat.2013.04.030
    [39]
    Du Y A, Ismer L, Rogal J, et al. First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe. <italic>Phys Rev B</italic>, 2011, 84(14): 144121 doi: 10.1103/PhysRevB.84.144121
    [40]
    Lee S M, Park I J, Jung J G, et al. The effect of Si on hydrogen embrittlement of Fe?18Mn?0.6C?<italic>x</italic>Si twinning-induced plasticity steels. <italic>Acta Mater</italic>, 2016, 103: 264 doi: 10.1016/j.actamat.2015.10.015
    [41]
    Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe?Mn?C TWIP steels. <italic>Corros Sci</italic>, 2014, 82: 218 doi: 10.1016/j.corsci.2014.01.022
    [42]
    Malard B, Remy B, Scott C, et al. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe?Mn?C steel studied by small-angle neutron scattering. <italic>Mater Sci Eng A</italic>, 2012, 536: 110 doi: 10.1016/j.msea.2011.12.080
    [43]
    Kwon Y J, Lee T, Lee J, et al. Role of Cu on hydrogen embrittlement behavior in Fe?Mn?C?Cu TWIP steel. <italic>Int J Hydrogen Energy</italic>, 2015, 40(23): 7409 doi: 10.1016/j.ijhydene.2015.04.022
    [44]
    Gangloff R P, Somerday B P. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. Cambridge: Woodhead Publishing, 2012
    [45]
    Toribio J, Kharin V. Hydrogen transport to fracture sites in metals and alloys: multiphysics modelling. <italic>Procedia Struct Integrity</italic>, 2017, 5: 1291 doi: 10.1016/j.prostr.2017.07.112
    [46]
    Oriani R A. The diffusion and trapping of hydrogen in steel. <italic>Acta Metall</italic>, 1970, 18(1): 147 doi: 10.1016/0001-6160(70)90078-7
    [47]
    Krom A H M, Bakker A. Hydrogen trapping models in steel. <italic>Metall Mater Trans B</italic>, 2000, 31(6): 1475 doi: 10.1007/s11663-000-0032-0
    [48]
    Maroef I, Olson D L, Eberhart M, et al. Hydrogen trapping in ferritic steel weld metal. <italic>Int Mater Rev</italic>, 2002, 47(4): 191 doi: 10.1179/095066002225006548
    [49]
    Bai Y, Momotani Y, Chen M C, et al. Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel. <italic>Mater Sci Eng A</italic>, 2016, 651: 935 doi: 10.1016/j.msea.2015.11.017
    [50]
    Choo W Y, Lee J Y. Thermal analysis of trapped hydrogen in pure iron. <italic>Metall Trans A</italic>, 1982, 13(1): 135 doi: 10.1007/BF02642424
    [51]
    Koyama M, Springer H, Merzlikin S V, et al. Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe?Mn?Al?C light weight austenitic steel. <italic>Int J Hydrogen Energy</italic>, 2014, 39(9): 4634 doi: 10.1016/j.ijhydene.2013.12.171
    [52]
    So K H, Kim J S, Chun Y S, et al. Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe?18Mn?1.5Al?0.6C TWIP steel. <italic>ISIJ Int</italic>, 2009, 49(12): 1952 doi: 10.2355/isijinternational.49.1952
    [53]
    Thomas R L S, Li D M, Gangloff R P, et al. Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength AERMET 100 steel. <italic>Metall Mater Trans A</italic>, 2002, 33(7): 1991 doi: 10.1007/s11661-002-0032-6
    [54]
    Bal B, Koyama M, Gerstein G, et al. Effect of strain rate on hydrogen embrittlement susceptibility of twinning-induced plasticity steel pre-charged with high-pressure hydrogen gas. <italic>Int J Hydrogen Energy</italic>, 2016, 41(34): 15362 doi: 10.1016/j.ijhydene.2016.06.259
    [55]
    Casillas G, Gazder A A, Pereloma E V, et al. Evidencing extrinsic stacking faults in twinning-induced plasticity steel. <italic>Mater Charact</italic>, 2017, 123: 275 doi: 10.1016/j.matchar.2016.11.039
    [56]
    Khedr M, Li W, Jin X J. Studying hydrogen embrittlement in nano-twinned polycrystalline Fe−12.5Mn−1.2C austenitic steel // TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings. Phoenix, 2018: 113
    [57]
    Koyama M, Akiyama E, Tsuzaki K. Hydrogen embrittlement in Al-added twinning-induced plasticity steels evaluated by tensile tests during hydrogen charging. <italic>ISIJ Int</italic>, 2012, 52(12): 2283 doi: 10.2355/isijinternational.52.2283
    [58]
    Chun Y S, Park K T, Lee C S. Delayed static failure of twinning-induced plasticity steels. <italic>Scripta Mater</italic>, 2012, 66(12): 960 doi: 10.1016/j.scriptamat.2012.02.038
    [59]
    Chin K G, Kang C Y, Shin S Y, et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. <italic>Mater Sci Eng A</italic>, 2011, 528(6): 2922 doi: 10.1016/j.msea.2010.12.085
    [60]
    Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. <italic>Scripta Mater</italic>, 2013, 68(6): 343 doi: 10.1016/j.scriptamat.2012.08.038
    [61]
    Rao V S. Some observations on the hydrogen embrittlement of Fe<sub>3</sub>Al?Fe<sub>3</sub>AlC intermetallic compounds. <italic>Mater Res Bull</italic>, 2004, 39(2): 169 doi: 10.1016/j.materresbull.2003.10.006
    [62]
    Timmerscheidt T A, Dey P, Bogdanovski D, et al. The role of κ-carbides as hydrogen traps in high-Mn steels. <italic>Metals</italic>, 2017, 7(7): 264 doi: 10.3390/met7070264
    [63]
    Turk A, Martín D S, Rivera-Díaz-del-Castillo P E J, et al. Correlation between vanadium carbide size and hydrogen trapping in ferritic steel. <italic>Scri Mater</italic>, 2018, 152: 112
    [64]
    Counts W, Wolverton C, Gibala R. Binding of multiple H atoms to solute atoms in bcc Fe using first principles. <italic>Acta Mater</italic>, 2011, 59(14): 5812 doi: 10.1016/j.actamat.2011.05.058
    [65]
    Marchi C S, Somerday B P, Robinson S L. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures. <italic>Int J Hydrogen Energy</italic>, 2007, 32(1): 100 doi: 10.1016/j.ijhydene.2006.05.008
    [66]
    Martin M L, Dadfarnia M, Nagao A, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. <italic>Acta Mater</italic>, 2019, 165: 734 doi: 10.1016/j.actamat.2018.12.014
    [67]
    Matsumoto R, Taketomi S, Matsumoto S, et al. Atomistic simulations of hydrogen embrittlement. <italic>Int J Hydrogen Energy</italic>, 2009, 34(23): 9576 doi: 10.1016/j.ijhydene.2009.09.052
    [68]
    Song J, Curtin W A. Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system. <italic>Acta Mater</italic>, 2014, 68: 61 doi: 10.1016/j.actamat.2014.01.008
    [69]
    解德剛, 李蒙, 單智偉. 氫與金屬的微觀交互作用研究進展. 中國材料進展, 2018, 37(3):215

    Xie D G, Li M, Shan Z W. Review on hydrogen-microstructure interaction in metals. <italic>Mater China</italic>, 2018, 37(3): 215
    [70]
    Chida T, Hagihara Y, Akiyama E, et al. Comparison of constant load, SSRT and CSRT methods for hydrogen embrittlement evaluation using round bar specimens of high strength steels. <italic>Tetsu-to-Hagane</italic>, 2014, 100(10): 1298 doi: 10.2355/tetsutohagane.100.1298
    [71]
    Song S W, Kim J N, Seo H J, et al. Effects of carbon content on the tensile and fatigue properties in hydrogen-charged Fe?17Mn?<italic>x</italic>C steels: the opposing trends. <italic>Mater Sci Eng A</italic>, 2018, 724: 469 doi: 10.1016/j.msea.2018.03.117
    [72]
    Li X C, Liu Y N, Yu Y, et al. Helium defects interactions and mechanism of helium bubble growth in tungsten: a molecular dynamics simulation. <italic>J Nucl Mater</italic>, 2014, 451(1-3): 356
    [73]
    Ismer L, Hickel T, Neugebauer J. Ab initio study of the solubility and kinetics of hydrogen in austenitic high Mn steels. <italic>Phys Rev B</italic>, 2010, 81(9): 094111 doi: 10.1103/PhysRevB.81.094111
    [74]
    Jiang Y F, Zhang B, Zhou Y, et al. Atom probe tomographic observation of hydrogen trapping at carbides/ferrite interfaces for a high strength steel. <italic>J Mater Sci Technol</italic>, 2018, 34(8): 1344 doi: 10.1016/j.jmst.2017.11.008
    [75]
    Ishikawa N, Sueyoshi H, Nagao A. Hydrogen microprint analysis on the effect of dislocations on grain boundary hydrogen distribution in steels. <italic>ISIJ Int</italic>, 2016, 56(3): 413 doi: 10.2355/isijinternational.ISIJINT-2015-329
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(6)

    Article views (2418) PDF downloads(315) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频