Citation: | ZOU Xing-yun, CHEN Ming, CAO Xiao-qiang, WANG Xuan, JIA Rong-chang, HUANG Yi-meng, LI Guang, YAN Bing-qi, WANG Peng, LI Lin, HU Shu-gang, Lü Xian-jun. Review of application of MOF materials for removal of environmental pollutants from water (I)[J]. Chinese Journal of Engineering, 2020, 42(3): 289-301. doi: 10.13374/j.issn2095-9389.2019.11.05.003 |
[1] |
Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal-organic framework. Nature, 1995, 378(6558): 703 doi: 10.1038/378703a0
|
[2] |
Kitagawa S, Kitaura R, Noro S I. Functional porous coordination polymers. Angew Chem Int Ed, 2004, 43(18): 2334 doi: 10.1002/anie.200300610
|
[3] |
Judeinstein P, Sanchez C. Hybrid organic-inorganic materials: a land of multidisciplinarity. J Mater Chem, 1996, 6(4): 511 doi: 10.1039/JM9960600511
|
[4] |
Janiak C. Functional organic analogues of zeolites based on metal-organic coordination frameworks. Angew Chem Int Ed, 1997, 36(13-14): 1431
|
[5] |
Yaghi O M, Li H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc, 1995, 117(41): 10401 doi: 10.1021/ja00146a033
|
[6] |
Li H L, Eddaoudi M, Groy T L, et al. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC=1,4-Benzenedicarboxylate). J Am Chem Soc, 1998, 120(33): 8571 doi: 10.1021/ja981669x
|
[7] |
Li H L, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402(6759): 276 doi: 10.1038/46248
|
[8] |
Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427(6974): 523 doi: 10.1038/nature02311
|
[9] |
Rosi N L, Kim J, Eddaoudi M, et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc, 2005, 127(5): 1504 doi: 10.1021/ja045123o
|
[10] |
Park K S, Ni Z, C?té A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci, 2006, 103(27): 10186 doi: 10.1073/pnas.0602439103
|
[11] |
黃曉春, 張杰鵬, 陳小明. [Zn(bim)2]?(H2O)1.67: 具有方鈉石拓撲結構的金屬?有機敞開骨架. 科學通報, 2003, 48(14):1491 doi: 10.3321/j.issn:0023-074X.2003.14.004
Huang X C, Zhang J P, Chen X M. [Zn(bim)2]?(H2O)1.67: metal-organic open skeleton with sodalite topology. Chin Sci Bull, 2003, 48(14): 1491 doi: 10.3321/j.issn:0023-074X.2003.14.004
|
[12] |
Huang X C, Lin Y Y, Zhang J P, et al. Ligand-directed strategy for Zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed, 2006, 45(10): 1557 doi: 10.1002/anie.200503778
|
[13] |
Hayashi H, C?téA P, Furukawa H, et al. Zeolite A imidazolate frameworks. Nature Mater, 2007, 6(7): 501 doi: 10.1038/nmat1927
|
[14] |
Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008, 319(5865): 939 doi: 10.1126/science.1152516
|
[15] |
Wang B, C?té A P, Furukawa H, et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 2008, 453(7192): 207 doi: 10.1038/nature06900
|
[16] |
Férey G, Serre C, Mellot‐Draznieks C, et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew Chem Int Ed, 2004, 43(46): 6296 doi: 10.1002/anie.200460592
|
[17] |
Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040 doi: 10.1126/science.1116275
|
[18] |
Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 1999, 283(5405): 1148 doi: 10.1126/science.283.5405.1148
|
[19] |
Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc, 2008, 130(42): 13850 doi: 10.1021/ja8057953
|
[20] |
Yang S H, Sun J L, Ramirez-Cuesta A J, et al. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nature Chem, 2012, 4(11): 887 doi: 10.1038/nchem.1457
|
[21] |
Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J Am Chem Soc, 2012, 134(36): 15016 doi: 10.1021/ja3055639
|
[22] |
Savage M, Cheng Y Q, Easun T L, et al. Selective adsorption of sulfur dioxide in a robust metal-organic framework material. Adv Mater, 2016, 28(39): 8705 doi: 10.1002/adma.201602338
|
[23] |
Wang C H, Liu X L, Demir N K, et al. Applications of water stable metal-organic frameworks. Chem Soc Rev, 2016, 45: 5107 doi: 10.1039/C6CS00362A
|
[24] |
Canivet J, Fateeva A, Guo Y M, et al. Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev, 2014, 43: 5594 doi: 10.1039/C4CS00078A
|
[25] |
Wen J, Fang Y, Zeng G M. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: a review of studies from the last decade. Chemosphere, 2018, 201: 627 doi: 10.1016/j.chemosphere.2018.03.047
|
[26] |
Li J, Wang X X, Zhao G X, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev, 2018, 47: 2322 doi: 10.1039/C7CS00543A
|
[27] |
Liu C, Yu L Q, Zhao Y T, et al. Recent advances in metal-organic frameworks for adsorption of common aromatic pollutants. Mikrochim Acta, 2018, 185: 342 doi: 10.1007/s00604-018-2879-2
|
[28] |
Ayati A, Shahrak M N, Tanhaei B, et al. Emerging adsorptive removal of azo dye by metal-organic frameworks. Chemosphere, 2016, 160: 30 doi: 10.1016/j.chemosphere.2016.06.065
|
[29] |
Qiu J, Zhang X, Feng Y, et al. Modified metal-organic frameworks as photocatalysts. Appl Catal B-Environ, 2018, 231: 317 doi: 10.1016/j.apcatb.2018.03.039
|
[30] |
Peterson G W, Mahle J J, DeCoste J B, et al. Extraordinary NO2 removal by the metal-organic framework UiO-66-NH2. Angew Chem Int Ed, 2016, 55(21): 6235 doi: 10.1002/anie.201601782
|
[31] |
Jun B M, Kim S, Kim Y, et al. Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework. Chemosphere, 2019, 231: 82 doi: 10.1016/j.chemosphere.2019.05.076
|
[32] |
Huang Y, Zeng X F, Guo L L, et al. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep Purif Technol, 2018, 194: 462 doi: 10.1016/j.seppur.2017.11.068
|
[33] |
Lee Y C, Yang J W. Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J Ind Eng Chem, 2012, 18(3): 1178 doi: 10.1016/j.jiec.2012.01.005
|
[34] |
Tofighy M A, Mohammadi T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater, 2011, 185(1): 140 doi: 10.1016/j.jhazmat.2010.09.008
|
[35] |
Luo X B, Ding L, Luo J M. Adsorptive removal of Pb(II) ions from aqueous samples with amino-functionalization of metal-organic frameworks MIL-101(Cr). J Chem Eng Data, 2015, 60(6): 1732 doi: 10.1021/je501115m
|
[36] |
Wang K, Gu J W, Yin N. Efficient removal of Pb(II) and Cd(II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis. Ind Eng Chem Res, 2017, 56(7): 880
|
[37] |
Yu C X, Shao Z C, Hou H W. A functionalized metal-organic framework decorated with O? groups showing excellent performance for lead(II) removal from aqueous solution. Chem Sci, 2017, 8: 7611 doi: 10.1039/C7SC03308G
|
[38] |
Wang Y, Ye G Q, Chen H H, et al. Functionalized metal-organic framework as a new platform for efficient and selective removal of cadmium (II) from aqueous solution. J Mater Chem A, 2015, 3(29): 15292 doi: 10.1039/C5TA03201F
|
[39] |
Zou F, Yu R H, Li R G, et al. Microwave-assisted synthesis of HKUST-1 and functionalized HKUST-1-@H3PW12O40: Selective adsorption of heavy metal ions in water analyzed with synchrotron radiation. ChemPhysChem, 2013, 14(12): 2825 doi: 10.1002/cphc.201300215
|
[40] |
Yin N, Wang K, Xia Y A, et al. Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb(II). Desalination, 2018, 430: 120 doi: 10.1016/j.desal.2017.12.057
|
[41] |
Lei C, Gao J, Ren W, et al. Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydr Polym, 2019, 205: 35 doi: 10.1016/j.carbpol.2018.10.029
|
[42] |
Chakraborty A, Bhattacharyya S, Hazra A, et al. Post-synthetic metalation in an anionic MOF for efficient catalytic activity and removal of heavy metal ions from aqueous solution. Chem Commun, 2016, 52: 2831 doi: 10.1039/C5CC09814A
|
[43] |
Zhang J, Xiong Z, Li C, et al. Exploring a thiol-functionalized MOF for elimination of lead and cadmium from aqueous solution. J Mol Liq, 2016, 221: 43 doi: 10.1016/j.molliq.2016.05.054
|
[44] |
Rahimi E, Mohaghegh N. Removal of toxic metal ions from Sungun acid rock drainage using mordenite zeolite, graphene nanosheets, and a novel metal-organic framework. Mine Water Environ, 2016, 35(1): 18 doi: 10.1007/s10230-015-0327-7
|
[45] |
Tahmasebi E, Masoomi M Y, Yamini Y, et al. Application of mechanosynthesized azine-decorated zinc(II) metal-organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: a comparative study. Inorg Chem, 2014, 54(2): 425
|
[46] |
Yuan G Y, Tian Y, Liu J, et al. Schiff base anchored on metal-organic framework for Co(II) removal from aqueous solution. Chem Eng J, 2017, 326: 691 doi: 10.1016/j.cej.2017.06.024
|
[47] |
Cheng X Q, Liu M, Zhang A F, et al. Size-controlled silver nanoparticles stabilized on thiol-functionalized MIL-53(Al) frameworks. Nanoscale, 2015, 7(21): 9738 doi: 10.1039/C5NR01292A
|
[48] |
Conde-González J E, Pe?a-Méndez E M, Rybáková S, et al. Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1). Chemosphere, 2016, 150: 659 doi: 10.1016/j.chemosphere.2016.02.005
|
[49] |
Asgari P, Mousavi S H, Aghayan H, et al. Nd-BTC metal-organic framework (MOF); synthesis, characterization and investigation on its adsorption behavior toward cesium and strontium ions. Microchem J, 2019, 150: 104188 doi: 10.1016/j.microc.2019.104188
|
[50] |
Pournara A D, Margariti A, Tarlas G D, et al. A Ca2+ MOF combining highly efficient sorption and capability for voltammetric determination of heavy metal ions in aqueous media. J Mater Chem A, 2019, 7(25): 15432 doi: 10.1039/C9TA03337H
|
[51] |
Liu T, Che J X, Hu Y Z, et al. Alkenyl/thiol-derived metalorganic frameworks (MOFs) by means of postsynthetic modification for effective mercury adsorption. Chem Eur J, 2014, 20(43): 14090 doi: 10.1002/chem.201403382
|
[52] |
Saleem H, Rafique U, Davies R P. Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous Mesoporous Mater, 2016, 221: 238 doi: 10.1016/j.micromeso.2015.09.043
|
[53] |
Luo F, Chen J L, Dang L L, et al. High-performance Hg2+ removal from ultra-low-concentration aqueous solution using both acylamide- and hydroxyl-functionalized metal-organic framework. J Mater Chem A, 2015, 3(18): 9616 doi: 10.1039/C5TA01669J
|
[54] |
Yee K K, Reimer N, Liu J, et al. Effective mercury sorption by thiol-laced metal-organic frameworks: in strong acid and the vapor phase. J Am Chem Soc, 2013, 135(21): 7795 doi: 10.1021/ja400212k
|
[55] |
Luo X B, Shen T T, Ding L, et al. Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg2+ from water. J Hazard Mater, 2016, 306: 313 doi: 10.1016/j.jhazmat.2015.12.034
|
[56] |
Song H X, Liu Y G, Xu W H, et al. Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095. Bioresource Technol, 2009, 100(21): 5079 doi: 10.1016/j.biortech.2009.05.060
|
[57] |
Bai Z L, Wang Y L, Li Y X, et al. First cationic uranyl-organic framework with anion-exchange capabilities. Inorg Chem, 2016, 55(13): 6358 doi: 10.1021/acs.inorgchem.6b00930
|
[58] |
Sheng D P, Zhu L, Xu C, et al. Efficient and selective uptake of
|
[59] |
Li Y X, Yang Z X, Wang Y L, et al. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nature Commun, 2017, 8: 1354 doi: 10.1038/s41467-017-01208-w
|
[60] |
Li J, Liu Y, Wang X X, et al. Experimental and theoretical study on selenate uptake to zirconium metal-organic frameworks: Effect of defects and ligands. Chem Eng J, 2017, 330: 1012 doi: 10.1016/j.cej.2017.08.038
|
[61] |
Li L L, Feng X Q, Han R P, et al. Cr(VI) removal via anion exchange on a silver-triazolate MOF. J Hazard Mater, 2017, 321: 622 doi: 10.1016/j.jhazmat.2016.09.029
|
[62] |
Zhang Q, Yu J C, Cai J F, et al. A porous Zr-cluster-based cationic metal-organic framework for highly efficient Cr2O72? removal from water. Chem Commun, 2015, 51(79): 14732 doi: 10.1039/C5CC05927E
|
[63] |
Aboutorabi L, Morsali A, Tahmasebi E, et al. Metal-organic framework based on isonicotinate N-oxide for fast and highly efficient aqueous phase Cr(VI) adsorption. Inorg Chem, 2016, 55(11): 5507 doi: 10.1021/acs.inorgchem.6b00522
|
[64] |
Wu S B, Ge Y J, Wang Y Q, et al. Adsorption of Cr(VI) on nano UiO-66-NH2 MOFs in water. Environ Technol, 2018, 39(15): 1937 doi: 10.1080/09593330.2017.1344732
|
[65] |
Niu H Y, Zheng Y, Wang S H, et al. Stable hierarchical microspheres of 1D Fe-gallic acid MOFs for fast and efficient Cr(VI) elimination by a combination of reduction, metal substitution and coprecipitation. J Mater Chem A, 2017, 5(32): 16600 doi: 10.1039/C7TA04006G
|
[66] |
Zhu K R, Chen C L, Xu H, et al. Cr(VI) reduction and immobilization by core-double-shell structured magnetic polydopamine@zeolitic idazolate frameworks-8 microspheres. ACS Sustainable Chem Eng, 2017, 5(8): 6795 doi: 10.1021/acssuschemeng.7b01036
|
[67] |
Zhu B J, Yu X Y, Jia Y, et al. Iron and 1, 3, 5-benzenetricarboxylic metal-organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions. J Phys Chem C, 2012, 116(15): 8601 doi: 10.1021/jp212514a
|
[68] |
Audu C O, Nguyen H G T, Chang C Y, et al. The dual capture of AsV and AsIII by UiO-66 and analogues. Chem Sci, 2016, 7(10): 6492 doi: 10.1039/C6SC00490C
|
[69] |
Vu T A, Le G H, Dao C D, et al. Arsenic removal from aqueous solutions by adsorption using novel MIL-53(Fe) as a highly efficient adsorbent. RSC Adv, 2015, 5(10): 5261
|
[70] |
Cai J H, Wang X Y, Zhou Y, et al. Selective adsorption of arsenate and the reversible structure transformation of the mesoporous metal-organic framework MIL-100(Fe). Phys Chem Chem Phys, 2016, 18(16): 10864 doi: 10.1039/C6CP00249H
|
[71] |
Jian M P, Liu B, Zhang G S, et al. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8(ZIF-8) nanoparticles. Colloids Surf A, 2015, 465: 67 doi: 10.1016/j.colsurfa.2014.10.023
|
[72] |
Huo J B, Xu L, Yang J C E, et al. Magnetic responsive Fe3O4-ZIF-8 core-shell composites for efficient removal of As(III) from water. Colloids Surf A, 2018, 539: 59 doi: 10.1016/j.colsurfa.2017.12.010
|
[73] |
Jian M P, Wang H, Liu R P, et al. Self-assembled one-dimensional MnO2@zeolitic imidazolate framework-8 nanostructures for highly efficient arsenite removal. Environ Sci Nano, 2016, 3(5): 1186 doi: 10.1039/C6EN00246C
|