<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
ZHANG Qing, HE Shuan-ling, ZHANG Zheng, WANG Li. Low-temperature selective catalytic reduction of NOz and anti-toxicity of MnOx?FeOy/TiO2?ZrO2?CeO2[J]. Chinese Journal of Engineering, 2020, 42(3): 321-330. doi: 10.13374/j.issn2095-9389.2019.11.05.002
Citation: ZHANG Qing, HE Shuan-ling, ZHANG Zheng, WANG Li. Low-temperature selective catalytic reduction of NOz and anti-toxicity of MnOx?FeOy/TiO2?ZrO2?CeO2[J]. Chinese Journal of Engineering, 2020, 42(3): 321-330. doi: 10.13374/j.issn2095-9389.2019.11.05.002

Low-temperature selective catalytic reduction of NOz and anti-toxicity of MnOx?FeOy/TiO2?ZrO2?CeO2

doi: 10.13374/j.issn2095-9389.2019.11.05.002
More Information
  • One of the most effective methods for the removal of NOz from industrial flue gas is the technology known as low-temperature selective catalytic reduction (SCR). The main problem limiting the industrial application of catalysts is the need to improve their performances at low temperatures, and the fact that the anti-toxic mechanism of low-temperature denitration catalysts has yet to be explicitly identified. In this study, a TiO2?ZrO2?CeO2 (molar ratio 4∶1∶1.25) carrier was prepared by the sol–gel method, and then loaded the active components MnOx and MnOx?FeOy using the citric-acid-solution impregnation method to synthesize a new type of Fe-modified Mn-based multi-oxidation-state composite catalyst. The performance of this Mn-based composite oxide catalyst was investigated with respect to its NH3-selective catalytic reduction of NO and sulfur resistance. The catalyst exhibits good low-temperature SCR redox ability and anti-poisoning ability in an SO2-containing atmosphere, whereby the introduction of Fe promotes the interaction between Mn and the TiO2?ZrO2?CeO2 (4∶1∶1.25) carrier, and increases the number of Lewis acid sites on the catalyst surface. According to the XPS analysis, the contents of Mn4+, Ce4+, and adsorbed oxygen are obviously increased, which is very advantageous for improving the performance of the catalyst. According to the thermogravimetric analysis, the introduction of Fe reduces the production of ammonium sulfate and ceric sulfate in the atmosphere containing SO2 and H2O, and inhibites the sulfation of manganese. The Fe element thereby increases the anti-toxic ability of the Mn-based multi-oxidation-state composite catalyst. By maintaining the MnOx (12.5%)?FeOy(0.8)/TiO2?ZrO2?CeO2 (4∶1∶1.25) catalyst at 180 ℃, while continuously feeding 10% H2O in volume fraction and 125×10?6 SO2 for 240 min, the NOz conversion rate can be stably maintained at 75.6%. Based on the results of this work, a new type of Mn-based composite oxide catalyst has been developed that provides a foundation for further exploring the SCR reaction of the catalyst and its anti-toxic mechanism to promote the industrial application of the SCR process.

     

  • loading
  • [1]
    Gao R H, Zhang D S, Liu X G, et al. Enhanced catalytic performance of V2O5-WO3/Fe2O3/TiO2 microspheres for selective catalytic reduction of NO by NH3. Catal Sci Technol, 2013, 3(1): 191
    [2]
    王麗秋, 王小方, 李會泉, 等. 焦爐煙氣濕法鋼渣聯合脫硫脫硝工藝及機理研究. 燕山大學學報, 2016, 40(4):348 doi: 10.3969/j.issn.1007-791X.2016.04.009

    Wang L Q, Wang X F, Li H Q, et al. Research on technical method and mechanism of combined desulfurization and denitrification of flue gas from coking furnace with steel slag. J Yanshan Univ, 2016, 40(4): 348 doi: 10.3969/j.issn.1007-791X.2016.04.009
    [3]
    Liu Z, Zhang S, Junhua L I, et al. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3. Appl Catal B Environ, 2014, 158-159(3): 11
    [4]
    Tang X F, Li J H, Sun L, et al. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3. Appl Catal B Environ, 2010, 99(1-2): 156
    [5]
    France L J, Yang Q, Li W, et al. Ceria modified FeMnOx?Enhanced performance and sulphur resistance for low-temperature SCR of NOx. Appl Catal B Environ, 2017, 206: 203
    [6]
    Qiu M Y, Zhan S H, Zhu D D, et al. NH3-SCR performance improvement of mesoporous Sn modified Cr-MnOx catalysts at low temperatures. Catal Today, 2015, 258: 103
    [7]
    Chang H Z, Li J H, Chen X Y, et al. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2. Catal Commun, 2012, 27: 54
    [8]
    Guo Y H, Wei H Y, Zhao G Y, et al. Low temperature catalytic performance of coal-fired flue gas oxidation over Mn?Co?Ce?Ox. Fuel, 2017, 206: 318
    [9]
    Fang N J, Guo J X, Shu S, et al. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR. Chem Eng J, 2017, 325: 114
    [10]
    Wu Z B, Jiang B Q, Liu Y, et al. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method. J Hazard Mater, 2007, 145(3): 488
    [11]
    Qi G, Yang R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Appl Catal B Environ, 2003, 44(3): 217
    [12]
    Fang C, Zhang D S, Shi L Y, et al. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3. Catal Sci Technol, 2013, 3(3): 803
    [13]
    Jin R B, Liu Y, Wang Y, et al. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Appl Catal B Environ, 2014, 148-149: 582
    [14]
    李強. MnOx/TiO2?ZrO2?CeO2催化劑的低溫SCR脫硝性能和抗毒性研究[學位論文]. 北京: 北京科技大學, 2017

    Li Q. Activity and Antitoxic Properties of MnOx/TiO2?ZrO2?CeO2 for the Low-Temperature Selective Catalytic Reduction of NO [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
    [15]
    徐海迪, 邱春天, 張秋林, 等. WO3對MnOx?CeO2/ZrO2?TiO2整體式催化劑NH3選擇性催化還原NOx性能的影響. 物理化學學報, 2010, 26(9):2449 doi: 10.3866/PKU.WHXB20100838

    Xu H D, Qiu C T, Zhang Q L, et al. Influence of tungsten oxide on selective catalytic reduction of NOx with NH3 over MnOx?CeO2/ZrO2?TiO2 monolith catalyst. Acta Phys-Chim Sin, 2010, 26(9): 2449 doi: 10.3866/PKU.WHXB20100838
    [16]
    鐘標城, 周廣英, 王文輝, 等. Fe摻雜對MnOx催化劑結構性質及低溫SCR反應機制的影響. 環境科學學報, 2011, 31(10):2091

    Zhong B C, Zhou G Y, Wang W H, et al. The effects of Fe substitution on the structure of MnOx catalyst and reaction pathway for low temperature SCR. Acta Sci Circum, 2011, 31(10): 2091
    [17]
    Chen Z, Yang Q, Li H, et al. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature. J Catalysis, 2010, 276(1): 56
    [18]
    Ettireddy P R, Ettireddy N, Mamedov S, et al. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl Catal B Environ, 2007, 76(1-2): 123
    [19]
    郭家秀, 袁書華, 龔茂初, 等. Ce0.35Zr0.55La0.10O1.95對低貴金屬Pt?Rh型三效催化劑性能的影響. 物理化學學報, 2007, 23(1):73

    Guo J X, Yuan S H, Gong M C, et al. Influence of Ce0.35Zr0.55La0.10O1.95 solid solution on the performance of Pt-Rh three-way catalysts. Acta Phys-Chim Sin, 2007, 23(1): 73
    [20]
    Zieliński J, Zglinicka I, Znak L, et al. Reduction of Fe2O3 with hydrogen. Appl Catal A General, 2010, 381(1-2): 191
    [21]
    Xu H D, Wang Y, Cao Y, et al. Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NOx with NH3. Chem Eng J, 2014, 240: 62
    [22]
    張秋林, 林濤, 李偉, 等. MnO2?CeO2/Ti0.25Zr0.25Al0.5O1.75整體式催化劑的低溫NH3選擇性催化還原NO性能研究. 無機化學學報, 2009, 25(3):485 doi: 10.3321/j.issn:1001-4861.2009.03.020

    Zhang Q L, Lin T, Li W, et al. Catalytic performance of MnO2?CeO2/Ti0.25Zr0.25Al0.5O1.75 monolith catalyst for low temperature selective catalytic reduction of NO with NH3. Chin J Inorg Chem, 2009, 25(3): 485 doi: 10.3321/j.issn:1001-4861.2009.03.020
    [23]
    范蕓珠, 曹發海. 硫酸銨熱分解反應動力學研究. 高校化學工程學報, 2011, 25(2):341 doi: 10.3969/j.issn.1003-9015.2011.02.028

    Fan Y Z, Cao F H. Thermal decomposition kinetics of ammonium sulfate. J Chem Eng Chin Univ, 2011, 25(2): 341 doi: 10.3969/j.issn.1003-9015.2011.02.028
    [24]
    Li X S, Yang G S, Wu W Y, et al. Study on roast reaction kinetics and crystal behavior of Ceria-based rare earth polishing powder. J Rare Earths, 2007, 25: 134
    [25]
    蔡鑫. 硫鐵化合物低溫氧化過程及動力學研究[學位論文]. 鄭州: 鄭州大學, 2015

    Cai X. Study on the Iron Sulfide Oxidation Process and Kinetics under Low Temperatures[Dissertation]. Zhengzhou: Zhengzhou University, 2015
    [26]
    張愛華. 錳化合物的熱分解動力學[學位論文]. 武漢: 中國地質大學, 2010

    Zhang A H. Kinetics for Thermal Decomposition of Manganese Compounds[Dissertation]. Wuhan: China University of Geosciences, 2010
    [27]
    Sheng Z Y, Hu Y F, Xue J M, et al. A novel co-precipitation method for preparation of Mn-Ce/TiO2 composites for NOx reduction with NH3 at low temperature. Environ Technol, 2012, 33(21): 2421
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (1209) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频