Citation: | LI Cui-ping, YAN Bing-heng, WANG Shao-yong, HOU He-zi, CHEN Ge-zhong. Variability behavior of yield stress for unclassified tailings pasted under measurement time?velocity double factors[J]. Chinese Journal of Engineering, 2020, 42(10): 1308-1317. doi: 10.13374/j.issn2095-9389.2019.10.19.002 |
[1] |
吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
|
[2] |
Rudman M, Simic K, Paterson D A, et al. Raking in gravity thickeners. Int J Miner Process, 2008, 86(1-4): 114 doi: 10.1016/j.minpro.2007.12.002
|
[3] |
Pullum L, Boger D V, Sofra F. Hydraulic mineral waste transport and storage. Ann Rev Fluid Mech, 2018, 58: 157
|
[4] |
楊超, 郭利杰, 張林, 等. 銅尾礦流變特性與管道輸送阻力計算. 工程科學學報, 2017, 39(5):663
Yang C, Guo L J, Zhang L, et al. Study of the rheological characteristics of copper tailings and calculation of resistance in pipeline transportation. Chin J Eng, 2017, 39(5): 663
|
[5] |
Knight A, Sofra F, Stickland A, et al. Variability of shear yield stress–measurement and implications for mineral processing // Proceedings of the 20th International Seminar on Paste and Thickened Tailings. Beijing, 2017: 57
|
[6] |
Sofra F. Rheological Properties of Fresh Cemented Paste Tailings // Paste Tailings Management. Berlin: Springer Press, 2017: 33
|
[7] |
Mitsoulis E. Flows of Viscoplastic Materials: Models and Computations. // Rheology Reviews. London: British Society of Rheology. 2007: 135
|
[8] |
張連富, 吳愛祥, 王洪江, 等. 尾礦膏體屈服應力演化規律. 中國有色金屬學報, 2018, 28(8):1631
Zhang L F, Wu A X, Wang H J, et al. Evolution law of yield stress in paste tailings. Chin J Nonferrous Met, 2018, 28(8): 1631
|
[9] |
張欽禮, 劉偉軍, 王新民, 等. 充填膏體流變參數優化預測模型. 中南大學學報: 自然科學版, 2018, 49(1):124
Zhang Q L, Liu W J, Wang X M, et al. Optimal prediction model of backfill paste rheological parameters. J Cent South Univ (Sci Technol)
|
[10] |
劉曉輝, 吳愛祥, 王洪江, 等. 膏體流變參數影響機制及計算模型. 工程科學學報, 2017, 39(2):190
Liu X H, Wu A X, Wang H J, et al. Influence mechanism and calculation model of CPB rheological parameters. Chin J Eng, 2017, 39(2): 190
|
[11] |
程海勇, 吳順川, 吳愛祥, 等. 基于膏體穩定系數的級配表征及屈服應力預測. 工程科學學報, 2018, 40(10):1168
Cheng H Y, Wu S C, Wu A X, et al. Grading characterization and yield stress prediction based on paste stability coefficient. Chin J Eng, 2018, 40(10): 1168
|
[12] |
Coussot P, Nguyen Q D, Huynh H T, et al. Viscosity bifurcation in thixotropic, yielding fluids. J Rheol, 2002, 46(3): 573 doi: 10.1122/1.1459447
|
[13] |
Coussot P, Nguyen Q D, Huynh H T, et al. Avalanche behavior in yield stress fluids. Phys Rev Lett, 2002, 88(17): 175501 doi: 10.1103/PhysRevLett.88.175501
|
[14] |
Buscall R, Kusuma T E, Stickland A D, et al. The non-monotonic shear-thinning flow of two strongly cohesive concentrated suspensions. J Non-Newton Fluid Mech, 2015, 222: 112 doi: 10.1016/j.jnnfm.2014.09.010
|
[15] |
M?ller P C F, Rodts S, Michels M A J, et al. Shear banding and yield stress in soft glassy materials. Phys Rev E, 2008, 77(4): 041507 doi: 10.1103/PhysRevE.77.041507
|
[16] |
Baudez J C, Coussot P. Abrupt transition from viscoelastic solidlike to liquidlike behavior in jammed materials. Phys Rev Lett, 2004, 93(12): 128302 doi: 10.1103/PhysRevLett.93.128302
|
[17] |
Coussot P, Raynaud J S, Bertrand F, et al. Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys Rev Lett, 2002, 88(21): 218301 doi: 10.1103/PhysRevLett.88.218301
|
[18] |
Schall P, Hecke M V. Shear bands in matter with granularity. Ann Rev Fluid Mech, 2010, 42: 67 doi: 10.1146/annurev-fluid-121108-145544
|
[19] |
Ovarlez G, Rodts S, Chateau X, et al. Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol Acta, 2009, 48(8): 831 doi: 10.1007/s00397-008-0344-6
|
[20] |
M?ller P C F, Mewis J, Bonn D. Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter, 2006, 2(4): 274 doi: 10.1039/b517840a
|
[21] |
楊柳華, 王洪江, 吳愛祥, 等. 全尾砂膏體攪拌剪切過程的觸變性. 工程科學學報, 2016, 38(10):1343
Yang L H, Wang H J, Wu A X, et al. Thixotropy of unclassified pastes in the process of stirring and shearing. Chin J Eng, 2016, 38(10): 1343
|
[22] |
Coussot P, Ancey C. Rheophysical classification of concentrated suspensions and granular pastes. Phys Rev E, 1999, 59(4): 4445 doi: 10.1103/PhysRevE.59.4445
|
[23] |
Stickland A D, Kumar A, Kusuma T E, et al. The effect of premature wall yield on creep testing of strongly flocculated suspensions. Rheol Acta, 2015, 54(5): 337 doi: 10.1007/s00397-015-0847-x
|
[24] |
Fisher D T, Clayton S A, Boger D V, et al. The bucket rheometer for shear stress-shear rate measurement of industrial suspensions. J Rheol, 2007, 51(5): 821 doi: 10.1122/1.2750657
|
[25] |
Mahaut F, Mokeddem S, Chateau X, et al. Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cem Concr Res, 2008, 38(11): 1276 doi: 10.1016/j.cemconres.2008.06.001
|
[26] |
吳愛祥, 焦華喆, 王洪江, 等. 膏體尾礦屈服應力檢測及其優化. 中南大學學報: 自然科學版, 2013, 44(8):3370
Wu A X, Jiao H Z, Wang H J, et al. Yield stress measurements and optimization of Paste tailings. J Cent South Univ (Sci Technol)
|
[27] |
Qian Y, Kawashima S. Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cem Concr Compos, 2018, 86: 288 doi: 10.1016/j.cemconcomp.2017.11.019
|
[28] |
劉曉輝. 膏體流變行為及其管流阻力特性研究[學位論文]. 北京: 北京科技大學, 2015
Liu X H. Study on Rheological Behavior and Pipe Flow Resistance of Paste Backfill[Dissertation]. Beijing: University of Science and Technology Beijing, 2015
|
[29] |
Buscall R, Scales P J, Stickland A D, et al. Dynamic and rate-dependent yielding in model cohesive suspensions. J Non-Newton Fluid Mech, 2015, 221: 40 doi: 10.1016/j.jnnfm.2015.04.001
|
[30] |
Coussot P. Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment. Hoboken: John Wiley & Sons Press, 2005
|
[31] |
Tanner R I. Aspects of non-colloidal suspension rheology. Phys Fluids, 2018, 30(10): 101301 doi: 10.1063/1.5047535
|