Citation: | ZHANG Jiang-shan, LIU Qing, YANG Shu-feng, LI Jing-she. Research progress on the role of ladle shroud in protecting molten steel during teeming in continuous-casting tundishes[J]. Chinese Journal of Engineering, 2020, 42(8): 939-948. doi: 10.13374/j.issn2095-9389.2019.10.15.001 |
[1] |
劉瀏. 高品質特殊鋼關鍵生產技術. 鋼鐵, 2018, 53(4):1
Liu L. Key production-technology for high-quality special steel. <italic>Iron Steel</italic>, 2018, 53(4): 1
|
[2] |
Li S S, Zhang L F, Ren Y, et al. Transient behavior of inclusions during reoxidation of Si-killed stainless steels in continuous casting tundish. <italic>ISIJ Int</italic>, 2016, 56(4): 584 doi: 10.2355/isijinternational.ISIJINT-2015-694
|
[3] |
Wang Y F, Zhang L F. Transient fluid flow phenomena during continuous casting: part II—cast speed change, temperature fluctuation, and steel grade mixing. <italic>ISIJ Int</italic>, 2010, 50(12): 1783 doi: 10.2355/isijinternational.50.1783
|
[4] |
Sahai Y, Emi T. Tundish Technology for Clean Steel Production. Singapore: World Scientific, 2007
|
[5] |
蔡開科. 連鑄坯質量控制. 北京: 冶金工業出版社, 2010
Cai K K. Quality Control of Continuous Casting Blank. Beijing: Metallurgical Industry Press, 2010
|
[6] |
Little J, Van Oosten M, McLean A. Factors affecting the reoxydation of molten steel during continuous casting. <italic>Can Metall Q</italic>, 1968, 7(4): 235 doi: 10.1179/cmq.1968.7.4.235
|
[7] |
Sommerville I, McKeogh E. Reoxidation of steel by air entrained during casting // Continuous Casting of Steel, Second Process Technology Conference. Warrendale, 1981: 256
|
[8] |
李凱. 新型連鑄水口密封元件的制備及應用[學位論文]. 沈陽: 東北大學, 2008
Li K. Preparation and Application of New-Style Sealing Member for Continuous Casting Nozzle [Dissertation]. Shenyang: Northeastern University, 2008
|
[9] |
Demasi G A, Hartmann R F. Development of the ladle shroud mechanism and its metallurgical benefits // Steelmaking Conference Proceedings. Warrendale, 1981: 245
|
[10] |
Whitmore B C. Oxide segregation in aluminum-killed strand cast steel slabs. <italic>Iron Steelmaker</italic>, 1978, 5(10): 34
|
[11] |
曹爾仙. 連鑄用浸入式長水口的發展. 鋼鐵, 1982, 17(9):14
Cao E X. Development of submerged nozzles in continuous casting. <italic>Iron Steel</italic>, 1982, 17(9): 14
|
[12] |
Zhang J S, Liu Q, Yang S F, et al. Advances in ladle shroud as a functional device in tundish metallurgy: a review. <italic>ISIJ Int</italic>, 2019, 59(7): 1167 doi: 10.2355/isijinternational.ISIJINT-2019-044
|
[13] |
Deng X X, Ji C X, Zhu G S, et al. Quantitative evaluations of surface cleanliness in IF steel slabs at unsteady casting. <italic>Metall Mater Trans B</italic>, 2019, 50(4): 1974 doi: 10.1007/s11663-019-01589-x
|
[14] |
鄧志銀, 朱苗勇. 引流砂: 鋼中大型夾雜物的重要來源// 第十一屆中國鋼鐵年會. 北京, 2017: 274
Deng Z Y, Zhu M Y. Ladle filler sand: An important source of macro-inclusions in steel// Proceedings of 11th China Iron & Steel Annual Meeting. Beijing, 2017: 274
|
[15] |
張闖, 周俐, 朱李艷, 等. 換包過程引流砂行為的試驗分析. 煉鋼, 2018, 34(4):35
Zhang C, Zhou L, Zhu L Y, et al. Experimental analysis of drainage sand behavior during conversion process during the change of ladle. <italic>Steelmaking</italic>, 2018, 34(4): 35
|
[16] |
任三兵, 秦波, 張豐. 通道式中間包內引流砂運動過程研究. 連鑄, 2019, 44(1):10
Ren S B, Qin B, Zhang F. Study on packing sand movement in tunnel type tundish. <italic>Continuous Cast</italic>, 2019, 44(1): 10
|
[17] |
李紅霞. 耐火材料發展概述. 無機材料學報, 2018, 33(2):198 doi: 10.15541/jim20170582
Li H X. Development overview of refractory materials. <italic>J Inorg Mater</italic>, 2018, 33(2): 198 doi: 10.15541/jim20170582
|
[18] |
張美杰, 黃奧, 顧華志, 等. 連鑄中間包耐火材料的沖蝕特性與控流裝置的優化設置. 武漢科技大學學報, 2010, 33(5):449
Zhang M J, Huang A, Gu H Z, et al. Flow control devices establishment and erosion corrosion of refractory in the continuous casting tundish. <italic>J Wuhan Univ Sci Technol</italic>, 2010, 33(5): 449
|
[19] |
Chatterjee S, Li D H, Chattopadhyay K. Tundish open eye formation: a trivial event with dire consequences. <italic>Steel Res Int</italic>, 2017, 88(9): 1600436 doi: 10.1002/srin.201600436
|
[20] |
唐海燕, 梁永昌. 鋼包澆注末期匯流旋渦形成機理及影響因素. 金屬學報, 2016, 52(5):519 doi: 10.11900/0412.1961.2015.00391
Tang H Y, Liang Y C. Formation mechanism and influence factors of sink vortex during ladle teeming. <italic>Acta Metall Sin</italic>, 2016, 52(5): 519 doi: 10.11900/0412.1961.2015.00391
|
[21] |
Leung J, Li D H, Chattopadhyay K. Nailed it! Measurement of steel surface velocity in the tundish with open eyes // AISTech 2019——Proceedings of the Iron & Steel Technology Conference. Pittsburgh, 2019: 1467
|
[22] |
Zhang C J, Bao Y P, Wang M, et al. Teeming stream protection using an argon shroud during casting of steel ingots. <italic>Int J Miner Metall Mater</italic>, 2017, 24(1): 47 doi: 10.1007/s12613-017-1377-6
|
[23] |
Kasai N, Yamazoe H, Iguchi M. Development of optimum argon shrouding system between ladle and tundish. <italic>Tetsu-to-Hagane</italic>, 2005, 91(10): 763 doi: 10.2355/tetsutohagane1955.91.10_763
|
[24] |
周川生, 平增幅. 連鑄“三大件”生產與使用: 整體塞棒、長水口、浸入式水口. 北京: 冶金工業出版社, 2014
Zhou C S, Ping Z F. Production and Use of Refractory for Continuous Casting Monolithic Stopper, Long Nozzle and Submersed Nozzle. Beijing: Metallurgical Industry Press, 2014
|
[25] |
Morikawa K, Yoshtomi J, Asano K. The performance of newly developed refractories for continuous // <italic>Tehran International Conference on Refractories</italic>. <italic>Tehran</italic>, 2004: 4
|
[26] |
Rasmussen P. Improvements to steel cleanliness at Dofasco’s No.2 melt shop // Steelmaking Conference, Chicago, 1994: 219
|
[27] |
Becker B, Prabhu N. Trumpet ladle shroud usage at No.2 BOF/CC of inland steel // Steelmaking Conference Proceedings. Washington, 1991: 489
|
[28] |
Zhang J S, Li J S, Yan Y, et al. A comparative study of fluid flow and mass transfer in a trumpet-shaped ladle shroud using large eddy simulation. <italic>Metall Mater Trans B</italic>, 2016, 47(1): 495 doi: 10.1007/s11663-015-0495-7
|
[29] |
Zhang J S, Yang S F, Chen Y F, et al. Comparison of multiphase flow in a continuous casting tundish using two types of industrialized ladle shrouds. <italic>JOM</italic>, 2018, 70(12): 2886 doi: 10.1007/s11837-018-2993-y
|
[30] |
文光華, 黃永鋒, 唐萍, 等. 鋼包長水口形狀對中間包內鋼液流動特性的影響. 重慶大學學報, 2011, 34(3):69
Wen G H, Huang Y F, Tang P, et al. Influence of ladle shroud’s shapes on characteristics of fluid flow in tundish. <italic>J Chongqing Univ</italic>, 2011, 34(3): 69
|
[31] |
Zhang H, Fang Q, Deng S Y, et al. Multiphase flow in a five-strand tundish using trumpet ladle shroud during steady-state casting and ladle change-over. <italic>Steel Res Int</italic>, 2019, 90(3): 1800497 doi: 10.1002/srin.201800497
|
[32] |
Zhang J S, Yang S F, Li M Y, et al. Mathematical modelling of fluid flow inside trumpet-shaped ladle shrouds. <italic>Ironmaking Steelmaking</italic>, 2017, 44(10): 732 doi: 10.1080/03019233.2017.1292692
|
[33] |
Solorio-Díaz G, Morales R D, Ramos-Banderas A. Effect of a swirling ladle shroud on fluid flow and mass transfer in a water model of a tundish. <italic>Int J Heat Mass Transfer</italic>, 2005, 48(17): 3574 doi: 10.1016/j.ijheatmasstransfer.2005.03.007
|
[34] |
Wang F, Li B K, Tsukihashi F. Large eddy simulation on flow structure in centrifugal flow tundish. <italic>ISIJ Int</italic>, 2007, 47(4): 568 doi: 10.2355/isijinternational.47.568
|
[35] |
Morales-Higa K, Guthrie R I L, Isac M, et al. Ladle shroud as a flow control device for tundish operations. <italic>Metall Mater Trans B</italic>, 2013, 44(1): 63 doi: 10.1007/s11663-012-9753-0
|
[36] |
Garcia-Hernandez S, Morales R D, de Jesus Barreto J, et al. Modeling study of slag emulsification during ladle change-over using a dissipative ladle shroud. <italic>Steel Res Int</italic>, 2016, 87(9): 1154 doi: 10.1002/srin.201500299
|
[37] |
Zhang H, Fang Q, Luo R H, et al. Effect of ladle changeover condition on transient three-phase flow in a five-strand bloom casting tundish. <italic>Metall Mater Trans B</italic>, 2019, 50(3): 1461 doi: 10.1007/s11663-019-01572-6
|
[38] |
阮飛, 趙鳳光, 揭暢, 等. 異型坯連鑄長水口浸入深度對中間包流動特性的影響. 連鑄, 2015, 40(3):9
Ruan F, Zhao F G, Jie C, et al. Influence of immersion depth of long nozzle on liquid steel flow characteristics in beam blank continuous casting tundish. <italic>Continuous Cast</italic>, 2015, 40(3): 9
|
[39] |
Das A, Chatterjee S, Mukherjee A. Efficient determination of misalignment of ladle shroud using machine vision // <italic>AISTech</italic> 2019—<italic>Proceedings of the Iron</italic> & <italic>Steel Technology Conference</italic>. <italic>Pittsburgh</italic>, 2019: 1479
|
[40] |
Chattopadhyay K, Liu F G, Isac M, et al. Effect of vertical alignment of ladle shroud on transient steel quality output from multistrand tundish. <italic>Ironmaking Steelmaking</italic>, 2011, 38(2): 112 doi: 10.1179/030192310X12731438631723
|
[41] |
Yu H, Choi I S, Kim M J, et al. Development of a hydraulic shroud nozzle manipulator with robust force control in continuous casting process. <italic>ISIJ Int</italic>, 2015, 55(5): 1025 doi: 10.2355/isijinternational.55.1025
|
[42] |
Shapland E P, King P D. Full Throttle Valve and Method of Tube and Gate Change: US Patents, US4415103A. 1985-10-08
|
[43] |
田陸. 一種長水口自動拆裝裝置: 中國專利, 201810127606.X. 2018-07-27
Tian L. A Device to Automatically Assemble and Disassemble Ladle Shroud: China Patent, 201810127606.X. 2018-07-27
|
[44] |
田陸, 包燕平, 李娟, 等. 一種高靈敏性鋼包下渣檢測裝置的研究與應用. 北京科技大學學報, 2009, 31(增刊1): 58
Tian L, Bao Y P, Li J, et al. Research and application of a high-sensitive slag detection system. J Univ Sci Technol Beijing, 2009, 31(Suppl 1): 58
|
[45] |
連文敬. 連鑄鋼包下渣檢測技術的發展. 中國冶金, 2011, 21(8):8
Lian W J. Development of the ladle slag carry-over detection technology in continuous casting. <italic>China Metall</italic>, 2011, 21(8): 8
|
[46] |
Chattopadhyay K, Hasan M, Isac M, et al. Physical and mathematical modeling of inert gas-shrouded ladle nozzles and their role on slag behavior and fluid flow patterns in a delta-shaped four-strand tundish. <italic>Metall Mater Trans B</italic>, 2010, 41(1): 225 doi: 10.1007/s11663-009-9296-1
|
[47] |
Bao Y P, Liu J H, Xu B M. Behaviors of fine bubbles in the shroud nozzle of ladle and tundish. <italic>J Univ Sci Technol Beijing</italic>, 2003, 10(4): 23
|
[48] |
Wang L H, Lee H G, Hayes P C. A new approach to molten steel refining using fine gas bubbles. <italic>ISIJ Int</italic>, 1996, 36(1): 17 doi: 10.2355/isijinternational.36.17
|
[49] |
Chang S, Cao X K, Zou Z S, et al. Micro-bubble formation under non-wetting conditions in a full-scale water model of a ladle shroud/tundish system. <italic>ISIJ Int</italic>, 2018, 58(1): 60 doi: 10.2355/isijinternational.ISIJINT-2017-390
|
[50] |
Evans G M, Rigby G D, Honeyands T A, et al. Gas dispersion through porous nozzles into down-flowing liquids. <italic>Chem Eng Sci</italic>, 1999, 54(21): 4861 doi: 10.1016/S0009-2509(99)00206-7
|
[51] |
高翱, 王強, 李德軍, 等. 電磁引流技術的出鋼效率及其影響因素. 金屬學報, 2010, 46(5):634 doi: 10.3724/SP.J.1037.2009.00848
Gao A, Wang Q, Li D J, et al. Efficiency and influencing factors of electromagnetic steel-teeming technology. <italic>Acta Metall Sin</italic>, 2010, 46(5): 634 doi: 10.3724/SP.J.1037.2009.00848
|
[52] |
鄭淑國, 鄒琦, 朱苗勇. 一種連鑄過程控制引流砂進入中間包的方法: 中國專利, 201810564363.6. 2018-10-09
Zheng S G, Zou Q, Zhu M Y. A Method to Avoid the Entry of Filler Sand into Tundish: China Patent, 201810564363.6. 2018-10-09
|
[53] |
殷瑞鈺. 新世紀以來中國煉鋼?連鑄的進步及命題. 中國冶金, 2014, 24(8):1
Yin R Y. The progress and propositions of Chinese steelmaking and continuous casting since the new century. <italic>China Metall</italic>, 2014, 24(8): 1
|