<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
CONG Ming, WU Tong, LIU Dong, YANG De-yong, DU Yu. Prostate MR/TRUS image segmentation and registration methods based on supervised learning[J]. Chinese Journal of Engineering, 2020, 42(10): 1362-1371. doi: 10.13374/j.issn2095-9389.2019.10.10.006
Citation: CONG Ming, WU Tong, LIU Dong, YANG De-yong, DU Yu. Prostate MR/TRUS image segmentation and registration methods based on supervised learning[J]. Chinese Journal of Engineering, 2020, 42(10): 1362-1371. doi: 10.13374/j.issn2095-9389.2019.10.10.006

Prostate MR/TRUS image segmentation and registration methods based on supervised learning

doi: 10.13374/j.issn2095-9389.2019.10.10.006
More Information
  • Corresponding author: E-mail: liud@dlut.edu.cn
  • Received Date: 2019-10-10
  • Publish Date: 2020-10-25
  • At present, the diagnosis of prostate cancer mainly relies on the level of prostate-specific antigen (PSA) followed by a prostate biopsy. The technology, transrectal ultrasound (TRUS), has been the most popular method for diagnosing prostate cancer because of its advantages, such as real-time, low cost, easy operation. However, the low imaging quality of ultrasound equipment makes it difficult to distinguish regions of malignant tumors from those of healthy tissues from low-quality images, which results in missing diagnoses or overtreating conditions. In contrast, magnetic resonance (MR) images of the prostate can quickly locate the position of malignant tumors. It is crucial to register the annotated MR images and the corresponding TRUS image to perform a targeted biopsy of the prostate tumor. The registration fusion of prostate magnetic resonance and transrectal ultrasound images helps to improve the accuracy of the prostate lesions targeted biopsy. Traditional registration methods that are usually manually selected, specific anatomical landmarks in segmented areas used as a reference, and performed rigid or nonrigid registration, which is inefficient because of the low quality of prostate TRUS images and the substantial differences in pixel intensity of the prostate between MR and TRUS images. This paper proposed a novel prostate MR/TRUS image segmentation and the automatic registration method was based on a supervised learning framework. First, the prostate active appearance model was trained to be applied in the prostate TRUS images segmentation task, and the random forest classifier was used for building a boundary-driven mathematical model to realize automatic segmentation of TRUS images. Then, some sets of MR/TRUS images contour landmarks were computed by matching the corresponding shape descriptors used for registration. The method was validated by comparing the automatic contour segmentation results with standard results, and the registration results with a traditional registration method. Results showed that our method could accurately realize the automatic segmentation and registration of prostate TRUS and MR images. The DSC (Dice similarity coefficient, DSC) accuracy of nine sets of registration results is higher than 0.98, whereas the average location accuracy of the urethral opening is 1.64 mm, which displays a better registration performance.

     

  • loading
  • [1]
    鄧益森, 何宇輝, 周曉峰. 前列腺靶向穿刺技術發展概況. 微創泌尿外科雜志, 2018, 7(6):428

    Deng Y S, He Y H, Zhou X F. Development of prostate targeted puncture technology. J Mimimally Invasive Urology, 2018, 7(6): 428
    [2]
    Guichard G, Larré, Gallina A, et al. Extended 21-sample needle biopsy protocol for diagnosis of prostate cancer in 1000 consecutive patients. Eur Urol, 2007, 52(2): 430 doi: 10.1016/j.eururo.2007.02.062
    [3]
    周智恩, 嚴維剛, 周毅, 等. MRI-超聲融合引導下前列腺靶向穿刺活檢的最新進展. 中華外科雜志, 2016, 54(10):792 doi: 10.3760/cma.j.issn.0529-5815.2016.10.016

    Zhou Z E, Yan W G, Zhou Y, et al. Recent progress in MRI-ultrasound fusion for guidance of targeted prostate biopsy. Chin J Surg, 2016, 54(10): 792 doi: 10.3760/cma.j.issn.0529-5815.2016.10.016
    [4]
    曲華偉, 劉輝, 崔子連, 等. 重點穿刺MRI可疑病灶區域在MRI/TRUS融合成像引導靶向前列腺穿刺中的診斷價值. 中華男科學雜志, 2016, 22(9):782

    Qu H W, Liu H, Cui Z L, et al. Focusing on MRI-suspected lesions in targeted transrectal prostate biopsy guided by MRI-TRUS fusion imaging for the diagnosis of prostate cancer. Natl J Androl, 2016, 22(9): 782
    [5]
    Schlenker B, Apfelbeck M, Buchner A, et al. MRI-TRUS fusion biopsy of the prostate: quality of image fusion in a clinical setting. Clin Hemorheol Microcirculat, 2018, 70(4): 433
    [6]
    Mitra J, Martí R, Oliver A, et al. Prostate multimodality image registration based on B-splines and quadrature local energy. Int J Comput Assisted Radiol Surg, 2012, 7(3): 445 doi: 10.1007/s11548-011-0635-8
    [7]
    Sun Y, Yuan J, Qiu W, et al. Three-dimensional nonrigid MR-TRUS registration using dual optimization. IEEE Trans Med Imag, 2015, 34(5): 1085 doi: 10.1109/TMI.2014.2375207
    [8]
    Moradi M, Janoos F, Fedorov A, et al. Two solutions for registration of ultrasound to MRI for image-guided prostate interventions // 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, 2012: 1129
    [9]
    Fedorov A, Khallaghi S, Sánchez C A, et al. Open-source image registration for MRI-TRUS fusion-guided prostate interventions. Int J Comput Assisted Radiol Surg, 2015, 10(6): 925 doi: 10.1007/s11548-015-1180-7
    [10]
    倪東, 吳海浪. 基于核磁-超聲融合的前列腺靶向穿刺系統. 深圳大學學報: 理工版, 2016, 33(2):111 doi: 10.3724/SP.J.1249.2016.02111

    Ni D, Wu H L. MRI-TRUS multi-modality image fusion for targeted prostate biopsy. J Shenzhen Univ Sci Eng, 2016, 33(2): 111 doi: 10.3724/SP.J.1249.2016.02111
    [11]
    王煒榮. MR與TRUS圖像輔助前列腺穿刺技術研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2018

    Wang W R. Research on Prostate Puncture Assisted by MR and TRUS Image[Dissertation]. Harbin: Harbin Institute of Technology, 2018
    [12]
    杜超. 前列腺穿刺引導中的MR和TRUS圖像去噪與分割方法[學位論文]. 哈爾濱: 哈爾濱工業大學, 2019

    Du C. MR and TRUS Image Denoising and Segmentation Methods in Prostate Puncture Guidance[Dissertation]. Harbin: Harbin Institute of Technology, 2019
    [13]
    Cootes T F, Edwards G J, Taylor C J. Active appearance models. IEEE Trans Pattern Anal Mach Intellig, 2001, 23(6): 681 doi: 10.1109/34.927467
    [14]
    Bookstein F L. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intellig, 1989, 11(6): 567 doi: 10.1109/34.24792
    [15]
    Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci, 2003, 43(6): 1947 doi: 10.1021/ci034160g
    [16]
    Rohr K, Fornefett M, Stiehl H S. Spline-based elastic image registration: integration of landmark errors and orientation attributes. Comput Vision Image Understand, 2003, 90(2): 153 doi: 10.1016/S1077-3142(03)00048-1
    [17]
    Evangelidis G D, Psarakis E Z. Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans Pattern Anal Mach Intellig, 2008, 30(10): 1858 doi: 10.1109/TPAMI.2008.113
    [18]
    Ghosh P, Mitchell M, Tanyi J A, et al. Incorporating priors for medical image segmentation using a genetic algorithm. Neurocomputing, 2016, 195: 181 doi: 10.1016/j.neucom.2015.09.123
    [19]
    Cosío F A. Automatic initialization of an active shape model of the prostate. Med Image Anal, 2008, 12(4): 469 doi: 10.1016/j.media.2008.02.001
    [20]
    Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intellig, 2002, 24(4): 509 doi: 10.1109/34.993558
    [21]
    Munkres J. Algorithms for the assignment and transportation problems. J Soc Ind Appl Math, 1957, 5(1): 32 doi: 10.1137/0105003
    [22]
    ?erifovi?-Trbali? A, Demirovi? D, Prlja?a N, et al. Intensity-based elastic registration incorporating anisotropic landmark errors and rotational information. Int J Comput Assisted Radiol Surg, 2009, 4(5): 463 doi: 10.1007/s11548-009-0358-2
    [23]
    Keys R. Cubic convolution interpolation for digital image processing. IEEE Trans Acoust Speech Signal Process, 1981, 29(6): 1153 doi: 10.1109/TASSP.1981.1163711
    [24]
    Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intellig, 1993, 15(9): 850 doi: 10.1109/34.232073
    [25]
    Dice L R. Measures of the amount of ecologic association between species. J Ecol, 1945, 26(3): 297 doi: 10.2307/1932409
    [26]
    Mitra J, Marti R, Oliver A, et al. A comparison of thin-plate splines with automatic correspondences and B-splines with uniform grids for multimodal prostate registration. Proc SPIE - Int Soc Opt Eng, 2011, 7964(2): 150
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article views (3970) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频