Citation: | LIU Shao-ming, DENG Zhan-feng, XU Gui-zhi, LI Bao-rang, SONG Peng-xiang, WANG Shao-rong. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe[J]. Chinese Journal of Engineering, 2020, 42(3): 278-288. doi: 10.13374/j.issn2095-9389.2019.10.10.001 |
[1] |
衣寶廉. 燃料電池: 原理·技術·應用. 北京: 化學工業出版社, 2003
Yi B L. Fuel Cell-Principle, Technology and Application. Beijing: Chemical Industry Press, 2003
|
[2] |
衣寶廉. 燃料電池—高效、環境友好的發電方式. 北京: 化學工業出版社, 2000
Yi B L. Fuel Cell-An Efficient and Environmentally Friendly Way to Generate Electricity. Beijing: Chemical Industry Press, 2000
|
[3] |
李箭. 固體氧化物燃料電池: 發展現狀與關鍵技術. 功能材料與器件學報, 2007, 13(6):683 doi: 10.3969/j.issn.1007-4252.2007.06.032
Li J. Solid oxide fuel cells: development status and key technologies. J Funct Mater Devices, 2007, 13(6): 683 doi: 10.3969/j.issn.1007-4252.2007.06.032
|
[4] |
Hassmann K. SOFC power plants, the Siemens‐Westinghouse approach. Fuel Cells, 2001, 1(1): 78 doi: 10.1002/1615-6854(200105)1:1<78::AID-FUCE78>3.0.CO;2-Q
|
[5] |
Timurkutluk B, Timurkutluk C, Mat M D, et al. A review on cell/stack designs for high performance solid oxide fuel cells. Renewable Sustainable Energy Rev, 2016, 56: 1101 doi: 10.1016/j.rser.2015.12.034
|
[6] |
Suzuki T, Yamaguchi T, Fujishiro Y, et al. Improvement of SOFC performance using a microtubular, anode-supported SOFC. J Electrochem Soc, 2006, 153(5): A925 doi: 10.1149/1.2185284
|
[7] |
Zhang Y H, Liu J, Yin J, et al. Fabrication and performance of cone‐shaped segmented-in-series solid oxide fuel cells. Int J Appl Ceram Technol, 2008, 5(6): 568 doi: 10.1111/j.1744-7402.2008.02253.x
|
[8] |
Wetzko M, Belzner A, Rohr F J, et al. Solid oxide fuel cell stacks using extruded honeycomb type elements. J Power Sources, 1999, 83(1-2): 148 doi: 10.1016/S0378-7753(99)00289-X
|
[9] |
Yamaguchi T, Shimizu S, Suzuki T, et al. Fabrication and evaluation of a novel cathode-supported honeycomb SOFC stack. Mater Lett, 2009, 63(29): 2577 doi: 10.1016/j.matlet.2009.09.009
|
[10] |
Kendall K. Progress in microtubular solid oxide fuel cells. Int J Appl Ceram Technol, 2010, 7(1): 1 doi: 10.1111/j.1744-7402.2008.02350.x
|
[11] |
Kendall K, Dikwal C M, Bujalski W. Comparative analysis of thermal and redox cycling for microtubular SOFCs. ECS Trans, 2007, 7(1): 1521
|
[12] |
Bujalski W, Dikwal C M, Kendall K. Cycling of three solid oxide fuel cell types. J Power Sources, 2007, 171(1): 96 doi: 10.1016/j.jpowsour.2007.01.029
|
[13] |
Vora S. Development of high power density seal-less SOFCs. ECS Trans, 2007, 7(1): 149
|
[14] |
Larminie J, Dicks A, McDonald M S. Fuel Cell Systems Explained. Chichester: J. Wiley, 2003
|
[15] |
Stolten D, Samsun R C, Garland N. Fuel Cells: Data, Facts, and Figures. New Jersey: Wiley-VCH, 2016
|
[16] |
Singnal S C, Kendall K. High Temperature Solid Oxide Fuel Cell: Fundamentals, Design and Applications. Beijing: Science Press, 2007
|
[17] |
Hickey D, Alinger M, Shapiro A, et al. Stack development at GE-fuel cells. ECS Trans, 2017, 78(1): 107 doi: 10.1149/07801.0107ecst
|
[18] |
Mukerjee S, Haltiner K, Kerr R, et al. Latest update on Delphi's solid oxide fuel cell stack for transportation and stationary applications. ECS Trans, 2011, 35(1): 139
|
[19] |
Vora S D, Lundberg W L, Pierre J F. Overview of US department of energy office of fossil energy’s solid oxide fuel cell program. ECS Trans, 2017, 78(1): 3 doi: 10.1149/07801.0003ecst
|
[20] |
Noponen M, Torri P, G??s J, et al. Status of solid oxide fuel cell development at elcogen. ECS Trans, 2015, 68(1): 151 doi: 10.1149/06801.0151ecst
|
[21] |
Barrett S. Convion C50 product being validated for distributed generation. Fuel Cells Bull, 2015, 2015(4): 6
|
[22] |
Mai A, Fleischhauer F, Denzler R, et al. Progress in HEXIS’Development: Galileo 1000 N and HEXIS'Next Generation SOFC System. ECS Trans, 2017, 78(1): 97 doi: 10.1149/07801.0097ecst
|
[23] |
Beale S. Precision engineering for future propulsion and power systems: a perspective from Rolls-Royce. Philos Trans R Soc A, 2012, 370(1973): 4130 doi: 10.1098/rsta.2011.0162
|
[24] |
Brabandt J, Posdziech O. System approach of a pressurized high-temperature electrolysis. ECS Trans, 2017, 78(1): 2987 doi: 10.1149/07801.2987ecst
|
[25] |
Bertoldi M, Bucheli O, Ravagni A. Development, manufacturing and deployment of SOFC-based products at Solid power. ECS Trans, 2015, 68(1): 117 doi: 10.1149/06801.0117ecst
|
[26] |
Inagaki T, Nishiwaki F, Yamasaki S, et al. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte. J Power Sources, 2008, 181(2): 274 doi: 10.1016/j.jpowsour.2007.10.088
|
[27] |
Nirasawa H. Current status of national SOFC Projects in Japan. ECS Trans, 2017, 78(1): 33 doi: 10.1149/07801.0033ecst
|
[28] |
Blum L, Meulenberg W A, Nabielek H, et al. Worldwide SOFC technology overview and benchmark. Int J Appl Ceram Technol, 2005, 2(6): 482 doi: 10.1111/j.1744-7402.2005.02049.x
|
[29] |
EG&G Technical Services, Inc. Fuel Cell Handbook, 2004: 1
|
[30] |
Vora S D. SECA program overview and status. ECS Trans, 2013, 57(1): 11 doi: 10.1149/05701.0011ecst
|
[31] |
Christiansen N, Primdahl S, Wandel M, et al. Status of the solid oxide fuel cell development at topsoe fuel cell A/S and DTU energy conversion. ECS Trans, 2013, 57(1): 43 doi: 10.1149/05701.0043ecst
|
[32] |
Halinen M, Saarinen J, Noponen M, et al. Experimental analysis on performance and durability of SOFC demonstration unit. Fuel Cells, 2010, 10(3): 440 doi: 10.1002/fuce.200900152
|
[33] |
Nakanishi A, Hattori M, Sakaki Y, et al. Development of MOLB type SOFC. ECS Proc Vol, 2003, 2003: 53
|
[34] |
Carter J D, Cruse T A, Bae J M, et al. Bipolar plate-supported solid oxide fuel cells for auxiliary power units//2002 MRS Fall Meeting. Boston, 2003: 545
|
[35] |
Visco S J, Jacobson C P, Villareal I, et al. Development of low-cost alloy supported SOFCs. ECS Proc Vol, 2003, 2003: 1040
|
[36] |
Leah R T, Bone A, Hammer E, et al. Development progress on the ceres power steel cell technology platform: further progress towards commercialization. ECS Trans, 2017, 78(1): 87 doi: 10.1149/07801.0087ecst
|
[37] |
Veyo S E, Shockling L A, Dederer J T, et al. Tubular solid oxide fuel cell/gas turbine hybrid cyclepower systems: status. J Eng Gas Turbines Power, 2002, 124(4): 845 doi: 10.1115/1.1473148
|
[38] |
Rechberger J, Kaupert A, Hagerskans J, et al. Demonstration of the first European SOFC APU on a heavy duty truck. Transp Res Procedia, 2016, 14: 3676 doi: 10.1016/j.trpro.2016.05.442
|
[39] |
Barrett S. AMI demos UGV power pod on iRobot PackBot. Fuel Cells Bull, 2009, 2009(11): 4
|
[40] |
Kachman D. Adaptive materials demonstrates fuel cell success in commercial markets. Fuel Cells Bull, 2013, 2013(12): 12 doi: 10.1016/S1464-2859(13)70423-1
|
[41] |
Tallgren J, Himanen O, Noponen M. Experimental characterization of low temperature solid oxide cell stack. ECS Trans, 2017, 78(1): 3103 doi: 10.1149/07801.3103ecst
|
[42] |
Barrett S, Elcogen, Convion supply SOFC CHP systems to business district smart grid project in Finland. Fuel Cells Bull, 2018, 2018(2): 1
|
[43] |
Blennow P, Hjelm J, Klemens? T, et al. Manufacturing and characterization of metal-supported solid oxide fuel cells. J Power Sources, 2011, 196(17): 7117 doi: 10.1016/j.jpowsour.2010.08.088
|
[44] |
Barrett S, Ceres Power, Weichai finalise strategic collaboration, JV deal. Fuel Cells Bull, 2019, 2019(1): 11
|
[45] |
Barrett S, Ceres, Weichai Power develop first range-extender bus prototype. Fuel Cells Bull, 2019, 2019(10): 4
|
[46] |
Leah R T, Bone A, Selcuk A, et al. Latest results and commercialization of the CERES power Steelcell technology platform. ECS Trans, 2019, 91(1): 51 doi: 10.1149/09101.0051ecst
|
[47] |
Barrett S, Solid power produces 1000th BlueGEN SOFC generator. Fuel Cells Bull, 2018, 2018(1): 6
|
[48] |
Barrett S, Solid power agrees German distribution with Bosch's Buderus. Fuel Cells Bull, 2018, 2018(7): 12
|
[49] |
Strohbach T, Mittmann F, Walter C, et al. Sunfire industrial SOC stacks and modules. ECS Trans, 2015, 68(1): 125 doi: 10.1149/06801.0125ecst
|
[50] |
朱彧, 杜晨, 王碩, 等. 鈣鈦礦太陽能電池穩定性研究進展. 工程科學學報, 2020, 42(1):16
Zhu Y, Du C, Wang S, et al. Research progress on the stability of perovskite solar cells. Chin J Eng, 2020, 42(1): 16
|