<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
CHEN Qing-fa, WANG Shao-ping, QIN Shi-kang. Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer[J]. Chinese Journal of Engineering, 2020, 42(9): 1119-1129. doi: 10.13374/j.issn2095-9389.2019.10.03.001
Citation: CHEN Qing-fa, WANG Shao-ping, QIN Shi-kang. Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer[J]. Chinese Journal of Engineering, 2020, 42(9): 1119-1129. doi: 10.13374/j.issn2095-9389.2019.10.03.001

Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer

doi: 10.13374/j.issn2095-9389.2019.10.03.001
More Information
  • Corresponding author: E-mail: chqf98121@163.com
  • Received Date: 2019-10-03
  • Publish Date: 2020-09-20
  • To further reveal the internal mechanism of the granular media flow process under the flexible isolation layer, numerical experiments on the evolution characteristics of bulk media flow force chain under the flexible isolation layer were carried out based on the discrete element software PFC. Based on a combination of contact mechanics and statistical mechanics, the evolution characteristics of the force chain length, quantity, strength, direction, and the collimation coefficient of the internal bulk medium system in the multi-funnel ore drawing process were quantitatively studied. It is found that the proportions of the strong contact and the force chain contact is found to be relatively stable in the multi-funnel ore drawing process; the proportion of strong contact is stable at about 33%, that of the force chain contact is stable at about 16%, and the fluctuation amplitude is not more than 2%. The total number of force chains decreases with the increase in ore drawing times, and it is stable at 790 strips in the later stage of ore drawing. The probability distribution of the force chain length is almost the same under different ore drawing times, and it decreases exponentially with the increase in the force chain length. The probability distribution of the force chain strength first increases exponentially with the increase in the ore drawing times and then decreases exponentially; it reaches a peak value at 0.7$\bar F$ ($\bar F$ is the average contact force). In the initial ore drawing stage, the force chain is mainly distributed along the vertical direction, and the force chain direction distribution is similar to a peanut shape. After that, with the continuous release of ore particles, the phenomenon of local stress concentration in the granular media system becomes remarkable, and the main direction of the force chain distribution changes to become four (vertical direction, horizontal direction, and angles of ±60° to the horizontal). The force chain collimation coefficient increases exponentially with the increase in drawing times and gradually becomes stable.

     

  • loading
  • [1]
    Littlewood D. Corporate social responsibility, mining and sustainable development in Namibia: critical reflections through a relational lens. <italic>Dev South Afr</italic>, 2015, 32(2): 240 doi: 10.1080/0376835X.2014.984833
    [2]
    Soni A K, Wolkersdorfer C. Mine water: policy perspective for improving water management in the mining environment with respect to developing economies. <italic>Int J Min Reclam Environ</italic>, 2016, 30(2): 115 doi: 10.1080/17480930.2015.1011372
    [3]
    陳慶發, 蘇家紅. 協同開采及其技術體系. 中南大學學報: 自然科學版, 2013, 44(2):732

    Chen Q F, Su J H. Synergetic mining and itstechnology system. <italic>J Cent South Univ Sci Technol</italic>, 2013, 44(2): 732
    [4]
    陳慶發, 吳仲雄. 大量放礦同步充填無頂柱留礦采礦方法: 中國專利, 201010181971.2. 2010-10-20

    Chen Q F, Wu Z X. A Large Number of Ore Drawing Synchronous Filling No-top-pillar Shrinkage Stoping Method: China Patent, 201010181971.2. 2010-10-20
    [5]
    Chen Q F, Qin S K, Chen Q L. Numerical simulation of ore particle flow behaviour through a single drawpoint under the influence of a flexible barrier. <italic>Geofluids</italic>, 2019: 6127174
    [6]
    Chen Q F, Qin S K, Chen Q L. Stress analysis of ore particle flow behaviour under the influence of a flexible barrier. <italic>Arab J Geosci</italic>, 2019, 12(15): 472 doi: 10.1007/s12517-019-4658-8
    [7]
    Chen Q F, Zhao F Y, Chen Q L, et al. Orthogonal simulation experiment for flow characteristics of ore in ore drawing and influencing factors in a single funnel under a flexible isolation layer. <italic>JOM</italic>, 2017, 69(12): 2485 doi: 10.1007/s11837-017-2409-4
    [8]
    陳慶發, 陳青林, 王玉丁, 等. 多漏斗放礦柔性隔離層界面移動規律及其拉力特性. 應用基礎與工程科學學報, 2018, 26(5):1101

    Chen Q F, Chen Q L, Wang Y D, et al. Study of the movement law and tensile force character of flexible isolation layer interface in multiple funnels. <italic>J Basic Sci Eng</italic>, 2018, 26(5): 1101
    [9]
    陳慶發, 陳青林, 鐘毓, 等. 柔性隔離層下多漏斗礦巖流動特性及影響因素正交模擬試驗. 中國科學: 技術科學, 2017, 47(9):923 doi: 10.1360/N092016-00324

    Chen Q F, Chen Q L, Zhong Y, et al. Orthogonal simulation test for flowing characteristics of ore-rock and influence factor in ore drawing from multiple funnels under flexible isolation layer. <italic>Sci Sin Tech</italic>, 2017, 47(9): 923 doi: 10.1360/N092016-00324
    [10]
    陳慶發, 陳青林, 仲建宇, 等. 柔性隔離層下單漏斗散體礦巖流動規律. 工程科學學報, 2016, 38(7):893

    Chen Q F, Chen Q L, Zhong J Y, et al. Flow pattern of granular ore rock in a single funnel under a flexible isolation layer. <italic>Chin J Eng</italic>, 2016, 38(7): 893
    [11]
    陳慶發, 陳青林, 仲建宇, 等. 單漏斗放礦柔性隔離層界面形態演化規律. 中國有色金屬學報, 2016, 26(6):1332

    Chen Q F, Chen Q L, Zhong J Y, et al. Evolution law of interface morphology of flexible isolation layer under ore drawing from single funnel. <italic>Chin J Nonferrous Met</italic>, 2016, 26(6): 1332
    [12]
    陳慶發, 趙富裕, 陳青林, 等. 基于室內模型試驗的多漏斗同步放礦柔性隔離層材料受力特性分析. 工程力學, 2018, 35(11):240 doi: 10.6052/j.issn.1000-4750.2017.08.0606

    Chen Q F, Zhao F Y, Chen Q L, et al. Mechanical properties analysis for a flexible isolation layer material in multiple funnels synchronous ore drawing based on an indoor model experiment. <italic>Eng Mech</italic>, 2018, 35(11): 240 doi: 10.6052/j.issn.1000-4750.2017.08.0606
    [13]
    Tordesillas A, Shi J Y, Muhlhaus H B. Noncoaxiality and force chain evolution. <italic>Int J Eng Sci</italic>, 2009, 47(11-12): 1386 doi: 10.1016/j.ijengsci.2008.12.011
    [14]
    Hunt G W, Tordesillas A, Green S C, et al. Force-chain buckling in granular media: a structural mechanics perspective. <italic>Philos Trans R Soc A</italic>:<italic>Math Phys Eng Sci</italic>, 2010, 368(1910): 249 doi: 10.1098/rsta.2009.0180
    [15]
    Socolar J E S, Schaeffer D G, Claudin P. Directed force chain networks and stress response in static granular materials. <italic>Eur Phys J E</italic>, 2002, 7(4): 353 doi: 10.1140/epje/i2002-10011-7
    [16]
    Estep J, Dufek J. Substrate effects from force chain dynamics in dense granular flows. <italic>J Geophys Res Earth Surf</italic>, 2012, 117(F1): 1028
    [17]
    Chen F X, Zhuang Q, Wang R L, et al. Damage point prediction of a force chain based on the digital image correlation method. <italic>Appl Opt</italic>, 2017, 56(3): 636 doi: 10.1364/AO.56.000636
    [18]
    Hou S Q, Wang W, Wang Z Y, et al. Force chain characteristics and effects of a dense granular flow system in a third body interface during the shear dilatancy process. <italic>J Appl Mech Tech Phys</italic>, 2018, 59(1): 153 doi: 10.1134/S0021894418010194
    [19]
    Tordesillas A. Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. <italic>Philos Mag</italic>, 2007, 87(32): 4987 doi: 10.1080/14786430701594848
    [20]
    Sun Q C, Jin F, Liu J G, et al. Understanding force chains in dense granular materials. <italic>Int J Mod Phys B</italic>, 2010, 24(29): 5743 doi: 10.1142/S0217979210055780
    [21]
    Tordesillas A, Steer C A H, Walker D M. Force chain and contact cycle evolution in a dense granular material under shallow penetration. <italic>Nonlin Processes Geophys</italic>, 2014, 21(2): 505 doi: 10.5194/npg-21-505-2014
    [22]
    Zhang W, Zhou J, Zhang X J, et al. Quantitative investigation into the relation between force chains and stress transmission during high-velocity compaction of powder. <italic>J Korean Phys Soc</italic>, 2019, 74(7): 660 doi: 10.3938/jkps.74.660
    [23]
    Zhang L R, Nguyen N G H, Lambert S, et al. The role of force chains in granular materials: from statics to dynamics. <italic>Eur J Environ Civil Eng</italic>, 2017, 21(7-8): 874 doi: 10.1080/19648189.2016.1194332
    [24]
    Xu R, Liu E L. Analysis on evolution of force chain and contact network of non-cohesive soil. <italic>Key Eng Mater</italic>, 2019, 803: 253 doi: 10.4028/www.scientific.net/KEM.803.253
    [25]
    辛海麗, 孫其誠, 劉建國, 等. 剛性塊體壓入顆粒體系時的受力及力鏈演變. 巖土力學, 2009, 30(增刊1): 88

    Xin H L, Sun Q C, Liu J G, et al. Evolution of force chains in a granular assembly based on indentation test. Rock Soil Mech, 2009, 30(Suppl l): 88
    [26]
    付龍龍, 周順華, 田志堯, 等. 雙軸壓縮條件下顆粒材料中力鏈的演化. 巖土力學, 2019, 40(6):2427

    Fu L L, Zhou S H, Tian Z Y, et al. Force chain evolution in granular materials during biaxial compression. <italic>Rock Soil Mech</italic>, 2019, 40(6): 2427
    [27]
    張煒, 周劍, 于世偉, 等. 雙軸壓縮下顆粒物質接觸力與力鏈特性研究. 應用力學學報, 2018, 35(3):530

    Zhang W, Zhou J, Yu S W, et al. Investigation on contact force and force chain of granular matter in biaxial compression. <italic>Chin J Appl Mech</italic>, 2018, 35(3): 530
    [28]
    Rothenburg L, Bathurst R J. Analytical study of induced anisotropy in idealized granular materials. <italic>Géotechnique</italic>, 1989, 39(4): 601 doi: 10.1680/geot.1989.39.4.601
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article views (1920) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频