Citation: | QIN Rong, FU Hua-dong, KANG Yong-wang, ZHOU Xiao-zhou, ZHANG Zhi-hao, XIE Jian-xin. Simulation of temperature field in directional solidification casting of Nb–Si based alloys[J]. Chinese Journal of Engineering, 2020, 42(9): 1165-1173. doi: 10.13374/j.issn2095-9389.2019.10.02.001 |
[1] |
Ma X, Guo X P, Fu M S, et al. Direct atomic-scale visualization of growth and dissolution of γNb<sub>5</sub>Si<sub>3</sub> in an Nb–Ti–Si based alloy via in-situ transmission electron microscopy. <italic>Scripta Mater</italic>, 2019, 164: 86 doi: 10.1016/j.scriptamat.2019.01.040
|
[2] |
Zhang S S, Liu W, Sha J B. Microstructural evolution and mechanical properties of Nb–Si–Cr ternary alloys with a tri-phase Nb/Nb<sub>5</sub>Si<sub>3</sub>/Cr<sub>2</sub>Nb microstructure fabricated by spark plasma sintering. <italic>Prog Nat Sci Mater Int</italic>, 2018, 28(5): 626 doi: 10.1016/j.pnsc.2018.09.001
|
[3] |
Ma X, Guo X P, Fu M S. HRTEM observation of silicides and Laves phase precipitates in Nb–Ti–Si based alloys. <italic>Int J Refract Met Hard Mater</italic>, 2019, 78: 138 doi: 10.1016/j.ijrmhm.2018.09.005
|
[4] |
Wang N, Jia L N, Kong B, et al. Eutectic evolution of directionally solidified Nb–Si based ultrahigh temperature alloys. <italic>Int J Refract Met Hard Mater</italic>, 2018, 71: 273 doi: 10.1016/j.ijrmhm.2017.11.001
|
[5] |
Bolbut V, Bogomol I, Loboda P, et al. Microstructure and mechanical properties of a directionally solidified Mo–12Hf–24B alloy. <italic>J Alloys Compd</italic>, 2018, 735: 2324 doi: 10.1016/j.jallcom.2017.11.352
|
[6] |
Park K B, Choi J, Lee S Y, et al. Sintering behaviour of Nb–16Si–25Ti–8Hf–2Cr–2Al alloy powder fabricated by a hydrogenation–dehydrogenation method. <italic>Mater Sci Technol</italic>, 2020, 36(12): 1372
|
[7] |
Guo Y L, Jia L N, Kong B, et al. Heat treatment induced phase transition and microstructural evolution in electron beam surface melted Nb–Si based alloys. <italic>Appl Surf Sci</italic>, 2017, 423: 417 doi: 10.1016/j.apsusc.2017.05.248
|
[8] |
Majumdar S. A study on microstructure development and oxidation phenomenon of arc consolidated Mo–Nb–Si–(Y) alloys. <italic>Int J Refract Met Hard Mater</italic>, 2019, 78: 76 doi: 10.1016/j.ijrmhm.2018.08.015
|
[9] |
Guo Y L, Liang Y J, Lu W J, et al. Competitive growth of nano-lamellae Nb/Nb<sub>3</sub>Si eutectics with enhanced hardness and toughness. <italic>Appl Surf Sci</italic>, 2019, 486: 22 doi: 10.1016/j.apsusc.2019.04.263
|
[10] |
Guo Y L, Jia L N, Kong B, et al. Improvement in the oxidation resistance of Nb–Si based alloy by selective laser melting. <italic>Corros Sci</italic>, 2017, 127: 260 doi: 10.1016/j.corsci.2017.08.022
|
[11] |
賈麗娜, 李小濺, 沙江波, 等. 定向凝固對Nb–14Si–22Ti–2Hf–2Al–4Cr合金組織和高低溫力學性能的影響. 稀有金屬材料與工程, 2010, 39(8):1475
Jia L N, Li X J, Sha J B, et al. Effect of directional solidification on microstructure and mechanical properties of Nb–14Si–22Ti–2Hf–2Al–4Cr alloy. <italic>Rare Met Mater Eng</italic>, 2010, 39(8): 1475
|
[12] |
Kang Y W, Guo F W, Li M. Effect of chemical composition and heat treatment on microstructure and mechanical properties of Nb–<italic>x</italic>Ti–16Si–3Cr–3Al–2Hf–<italic>y</italic>Zr alloy. <italic>Mater Sci Eng A</italic>, 2019, 760: 118 doi: 10.1016/j.msea.2019.05.117
|
[13] |
Wang N, Liu L, Gao S F, et al. Simulation of grain selection during single crystal casting of a Ni-base superalloy. <italic>J Alloys Compd</italic>, 2014, 586: 220 doi: 10.1016/j.jallcom.2013.10.036
|
[14] |
Yan Y C, Ding H S, Kang Y W, et al. Microstructure evolution and mechanical properties of Nb–Si based alloy processed by electromagnetic cold crucible directional solidification. <italic>Mater Des</italic>, 2014, 55: 450 doi: 10.1016/j.matdes.2013.10.017
|
[15] |
Hunt J.D. Cellular and primary dendrite spacings // Proceeding International Conference on Solidification and Casting of Metal. London, 1979: 3
|
[16] |
Kurz W, Fisher D J. Dendrite growth at the limit of stability: tip radius and spacing. <italic>Acta Metall</italic>, 1981, 29(1): 11 doi: 10.1016/0001-6160(81)90082-1
|
[17] |
Drezet J M, Rappaz M, Grün G U, et al. Determination of thermophysical properties and boundary conditions of direct chill-cast aluminum alloys using inverse methods. <italic>Metall Mater Trans A</italic>, 2000, 31(6): 1627 doi: 10.1007/s11661-000-0172-5
|
[18] |
Jin H P, Li J R, Pan D. Application of inverse method to estimation of boundary conditions during investment casting simulation. <italic>Acta Metall Sin </italic>(<italic>Engl Lett</italic>)<italic></italic>, 2009, 22(6): 429 doi: 10.1016/S1006-7191(08)60119-2
|
[19] |
Miller J D, Yuan L, Lee P D, et al. Simulation of diffusion-limited lateral growth of dendrites during solidification <italic>via</italic> liquid metal cooling. <italic>Acta Mater</italic>, 2014, 69: 47 doi: 10.1016/j.actamat.2014.01.035
|