<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
QIN Rong, FU Hua-dong, KANG Yong-wang, ZHOU Xiao-zhou, ZHANG Zhi-hao, XIE Jian-xin. Simulation of temperature field in directional solidification casting of Nb–Si based alloys[J]. Chinese Journal of Engineering, 2020, 42(9): 1165-1173. doi: 10.13374/j.issn2095-9389.2019.10.02.001
Citation: QIN Rong, FU Hua-dong, KANG Yong-wang, ZHOU Xiao-zhou, ZHANG Zhi-hao, XIE Jian-xin. Simulation of temperature field in directional solidification casting of Nb–Si based alloys[J]. Chinese Journal of Engineering, 2020, 42(9): 1165-1173. doi: 10.13374/j.issn2095-9389.2019.10.02.001

Simulation of temperature field in directional solidification casting of Nb–Si based alloys

doi: 10.13374/j.issn2095-9389.2019.10.02.001
More Information
  • Corresponding author: E-mail: hdfu@ustb.edu.cn
  • Received Date: 2019-10-02
  • Publish Date: 2020-09-20
  • With the increasing demand for improvements in the temperature capability of aero-engines, there is an urgent need to develop new-generation turbine blade materials. Compared with Ni-based superalloys that have a lower melting point (~1300 ℃), the higher melting point (>1750 ℃), lower mass density (6.6–7.2 g·cm–3), and high-temperature strength of the Nb–Si based alloys make them one of the most promising of the new-generation high-temperature structural materials. A directional solidification process can further enhance the performance of Nb–Si based alloys and lay a foundation for replacing the Ni-based single-crystal superalloys in service at higher temperatures. Accurately determining the thermal property parameters of Nb–Si based alloys and their interfacial heat transfer behavior during solidification is the key to their numerical simulation, which could accelerate the development of Nb–Si based alloys. As yet, however, there has been no research reported in relation to this issue. In this study, we used the directional solidification process of Nb–Si based alloys as the research object and the experimental testing and reverse methods to determine the thermal properties of Nb–Si based alloys and their shells as well as the boundary conditions of the heat transfer coefficient at the interface during the solidification process. To simulate the temperature field of the solidification process of Nb–Si based alloys at different drawing rates, we used ProCAST software. The results reveal that as the withdrawal rate increased from 5 to 10 mm·min?1, the distance between the solid/liquid interface and the surface of the liquid metal tin decreased from 12.1 to 8.2 mm, and the average width of the mushy zone gradually narrowed from 11.5 mm to 10.4 mm. The discrepancy in the spacing of the primary dendrites between the numerical simulation and the actual experimental results at a withdrawal rate of 5 mm·min?1 was within 6%, which verifies the correctness of the temperature-field simulation results. These results provide reference for the determination of the directional solidification casting parameters of turbine blades made of Nb–Si based alloys.

     

  • loading
  • [1]
    Ma X, Guo X P, Fu M S, et al. Direct atomic-scale visualization of growth and dissolution of γNb<sub>5</sub>Si<sub>3</sub> in an Nb–Ti–Si based alloy via in-situ transmission electron microscopy. <italic>Scripta Mater</italic>, 2019, 164: 86 doi: 10.1016/j.scriptamat.2019.01.040
    [2]
    Zhang S S, Liu W, Sha J B. Microstructural evolution and mechanical properties of Nb–Si–Cr ternary alloys with a tri-phase Nb/Nb<sub>5</sub>Si<sub>3</sub>/Cr<sub>2</sub>Nb microstructure fabricated by spark plasma sintering. <italic>Prog Nat Sci Mater Int</italic>, 2018, 28(5): 626 doi: 10.1016/j.pnsc.2018.09.001
    [3]
    Ma X, Guo X P, Fu M S. HRTEM observation of silicides and Laves phase precipitates in Nb–Ti–Si based alloys. <italic>Int J Refract Met Hard Mater</italic>, 2019, 78: 138 doi: 10.1016/j.ijrmhm.2018.09.005
    [4]
    Wang N, Jia L N, Kong B, et al. Eutectic evolution of directionally solidified Nb–Si based ultrahigh temperature alloys. <italic>Int J Refract Met Hard Mater</italic>, 2018, 71: 273 doi: 10.1016/j.ijrmhm.2017.11.001
    [5]
    Bolbut V, Bogomol I, Loboda P, et al. Microstructure and mechanical properties of a directionally solidified Mo–12Hf–24B alloy. <italic>J Alloys Compd</italic>, 2018, 735: 2324 doi: 10.1016/j.jallcom.2017.11.352
    [6]
    Park K B, Choi J, Lee S Y, et al. Sintering behaviour of Nb–16Si–25Ti–8Hf–2Cr–2Al alloy powder fabricated by a hydrogenation–dehydrogenation method. <italic>Mater Sci Technol</italic>, 2020, 36(12): 1372
    [7]
    Guo Y L, Jia L N, Kong B, et al. Heat treatment induced phase transition and microstructural evolution in electron beam surface melted Nb–Si based alloys. <italic>Appl Surf Sci</italic>, 2017, 423: 417 doi: 10.1016/j.apsusc.2017.05.248
    [8]
    Majumdar S. A study on microstructure development and oxidation phenomenon of arc consolidated Mo–Nb–Si–(Y) alloys. <italic>Int J Refract Met Hard Mater</italic>, 2019, 78: 76 doi: 10.1016/j.ijrmhm.2018.08.015
    [9]
    Guo Y L, Liang Y J, Lu W J, et al. Competitive growth of nano-lamellae Nb/Nb<sub>3</sub>Si eutectics with enhanced hardness and toughness. <italic>Appl Surf Sci</italic>, 2019, 486: 22 doi: 10.1016/j.apsusc.2019.04.263
    [10]
    Guo Y L, Jia L N, Kong B, et al. Improvement in the oxidation resistance of Nb–Si based alloy by selective laser melting. <italic>Corros Sci</italic>, 2017, 127: 260 doi: 10.1016/j.corsci.2017.08.022
    [11]
    賈麗娜, 李小濺, 沙江波, 等. 定向凝固對Nb–14Si–22Ti–2Hf–2Al–4Cr合金組織和高低溫力學性能的影響. 稀有金屬材料與工程, 2010, 39(8):1475

    Jia L N, Li X J, Sha J B, et al. Effect of directional solidification on microstructure and mechanical properties of Nb–14Si–22Ti–2Hf–2Al–4Cr alloy. <italic>Rare Met Mater Eng</italic>, 2010, 39(8): 1475
    [12]
    Kang Y W, Guo F W, Li M. Effect of chemical composition and heat treatment on microstructure and mechanical properties of Nb–<italic>x</italic>Ti–16Si–3Cr–3Al–2Hf–<italic>y</italic>Zr alloy. <italic>Mater Sci Eng A</italic>, 2019, 760: 118 doi: 10.1016/j.msea.2019.05.117
    [13]
    Wang N, Liu L, Gao S F, et al. Simulation of grain selection during single crystal casting of a Ni-base superalloy. <italic>J Alloys Compd</italic>, 2014, 586: 220 doi: 10.1016/j.jallcom.2013.10.036
    [14]
    Yan Y C, Ding H S, Kang Y W, et al. Microstructure evolution and mechanical properties of Nb–Si based alloy processed by electromagnetic cold crucible directional solidification. <italic>Mater Des</italic>, 2014, 55: 450 doi: 10.1016/j.matdes.2013.10.017
    [15]
    Hunt J.D. Cellular and primary dendrite spacings // Proceeding International Conference on Solidification and Casting of Metal. London, 1979: 3
    [16]
    Kurz W, Fisher D J. Dendrite growth at the limit of stability: tip radius and spacing. <italic>Acta Metall</italic>, 1981, 29(1): 11 doi: 10.1016/0001-6160(81)90082-1
    [17]
    Drezet J M, Rappaz M, Grün G U, et al. Determination of thermophysical properties and boundary conditions of direct chill-cast aluminum alloys using inverse methods. <italic>Metall Mater Trans A</italic>, 2000, 31(6): 1627 doi: 10.1007/s11661-000-0172-5
    [18]
    Jin H P, Li J R, Pan D. Application of inverse method to estimation of boundary conditions during investment casting simulation. <italic>Acta Metall Sin </italic>(<italic>Engl Lett</italic>)<italic></italic>, 2009, 22(6): 429 doi: 10.1016/S1006-7191(08)60119-2
    [19]
    Miller J D, Yuan L, Lee P D, et al. Simulation of diffusion-limited lateral growth of dendrites during solidification <italic>via</italic> liquid metal cooling. <italic>Acta Mater</italic>, 2014, 69: 47 doi: 10.1016/j.actamat.2014.01.035
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (1331) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频