Citation: | LIU Yuan-feng, ZHANG Xiu-ling, LI Cong-ju. Advances in carbon-based anode materials for microbial fuel cells[J]. Chinese Journal of Engineering, 2020, 42(3): 270-277. doi: 10.13374/j.issn2095-9389.2019.09.27.008 |
[1] |
Houghton J, Santoro C, Soavi F, et al. Supercapacitive microbial fuel cell: characterization and analysis for improved charge storage/delivery performance. Bioresour Technol, 2016, 218: 552 doi: 10.1016/j.biortech.2016.06.105
|
[2] |
劉遠峰, 王在釗, 劉建波, 等. 微生物燃料電池處理直接大紅模擬廢水. 青島科技大學學報: 自然科學版, 2016, 37(2):180
Liu Y F, Wang Z Z, Liu J B, et al. Direct scarlet simulated wastewater treatment by microbial fuel cell. J Qingdao Univ Sci Technol Nat Sci Ed, 2016, 37(2): 180
|
[3] |
劉遠峰, 耿鳳華, 劉建波, 等. 微生物燃料電池處理含銅廢水的研究. 環境污染與防治, 2017, 39(2):185
Liu Y F, Geng F H, Liu J B, et al. Study on treatment of copper-containing wastewater by microbial fuel cell. Environ Pollut Control, 2017, 39(2): 185
|
[4] |
劉遠峰, 孫偉, 宮磊. 電子受體對微生物燃料電池產電性能的影響. 環境污染與防治, 2016, 38(11):84
Liu Y F, Sun W, Gong L. Effect of electron acceptors on electricity generation property of MFC. Environ Pollut Control, 2016, 38(11): 84
|
[5] |
Slate A J, Whitehead K A, Brownson D A C, et al. Microbial fuel cells: an overview of current technology. Renewable Sustainable Energy Rev, 2019, 101: 60 doi: 10.1016/j.rser.2018.09.044
|
[6] |
Sonawane J M, Yadav A, Ghosh P C, et al. Recent advantages in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens Bioelectron, 2017, 90: 558 doi: 10.1016/j.bios.2016.10.014
|
[7] |
Palanisamy G, Jung H Y, Sadhasivam T, et al. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. J Cleaner Prod, 2019, 221: 598 doi: 10.1016/j.jclepro.2019.02.172
|
[8] |
Zhang X L, Fan W, Li H, et al. Extending cycling life of lithium-oxygen batteries based on novel catalytic nanofiber membrane and controllable screen-printed method. J Mater Chem A, 2018, 6(43): 21458
|
[9] |
Knupp W G, Ribeiro M S, Mir M, et al. Dynamics of hydroxyapatite and carbon nanotubes interaction. Appl Surf Sci, 2019, 495: 143493 doi: 10.1016/j.apsusc.2019.07.235
|
[10] |
Zhang P, Liu J, Qu Y P, et al. Enhanced performance of microbial fuel cell with a bacteria/multi-walled carbon nanotube hybrid biofilm. J Power Sources, 2017, 361: 318 doi: 10.1016/j.jpowsour.2017.06.069
|
[11] |
Ma H Y, Xia T, Bian C C, et al. Bacterial electroactivity and viability depends on carbon nanotube-coated sponge anode used in a microbial fuel cell. Bioelectrochemistry, 2018, 122: 26 doi: 10.1016/j.bioelechem.2018.02.008
|
[12] |
Iftimie S, Dumitru A. Enhancing the performance of microbial fuel cells (MFCs) with nitrophenyl modified carbon nanotubes-based anodes. Appl Surf Sci, 2019, 492: 661 doi: 10.1016/j.apsusc.2019.06.241
|
[13] |
官亮亮, 魯建豪, 連芳. 具有核殼結構的FeS_2微米球與碳納米管原位復合介孔材料的構建及其在鋰離子電池中的應用. 工程科學學報, 2019, 41(4):489
Guan L L, Lu J H, Lian F. Mesoporous composite of core-shell FeS_2micron spheres with multi-walled CNTs and its application in lithium ion batteries. Chin J Eng, 2019, 41(4): 489
|
[14] |
Pareek A, Sravan J S, Mohan S V. Fabrication of three-dimensional graphene anode for augmenting performance in microbial fuel cells. Carbon Resour Convers, 2019, 2(2): 134 doi: 10.1016/j.crcon.2019.06.003
|
[15] |
周龍斐, 邱紅梅, 徐美, 等. 石墨烯/二氧化錳復合材料的制備及其電化學性能. 工程科學學報, 2016, 38(9):1300
Zhou L F, Qiu H M, Xu M, et al. Synthesis and electrochemical properties of graphene/MnO2 composites. Chin J Eng, 2016, 38(9): 1300
|
[16] |
Zhou S W, Lin M, Zhang Z C, et al. Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell. Chemosphere, 2019, 232: 396 doi: 10.1016/j.chemosphere.2019.05.191
|
[17] |
Huang L H, Li X F, Ren Y P, et al. In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell. Int J Hydrogen Energy, 2016, 41(26): 11369 doi: 10.1016/j.ijhydene.2016.05.048
|
[18] |
Paul D, Noori M T, Rajesh P P, et al. Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell. Sustainable Energy Technol Assessments, 2018, 26: 77 doi: 10.1016/j.seta.2017.10.001
|
[19] |
Yu F, Wang C, Ma J. Capacitance-enhanced 3D graphene anode for microbial fuel cell with long-time electricity generation stability. Electrochim Acta, 2018, 259: 1059 doi: 10.1016/j.electacta.2017.11.038
|
[20] |
Zhang L J, He W H, Yang J C, et al. Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells. Biosens Bioelectron, 2018, 122: 217 doi: 10.1016/j.bios.2018.09.005
|
[21] |
Lan L H, Li J, Feng Q, et al. Enhanced current production of the anode modified by microalgae derived nitrogen-rich biocarbon for microbial fuel cells. Int J Hydrogen Energy, 2019, 45: 3833
|
[22] |
Chen Q, Pu W H, Hou H J, et al. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells. Bioresour Technol, 2018, 249: 567 doi: 10.1016/j.biortech.2017.09.086
|
[23] |
Chang S H, Liou J S, Liu J L, et al. Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells. J Power Sources, 2016, 336: 99 doi: 10.1016/j.jpowsour.2016.10.058
|
[24] |
Zhang X L, Fan W, Zhao S Y, et al. An efficient, bifunctional catalyst for lithium-oxygen batteries obtained through tuning the exterior Co2+/Co3+ ratio of CoOx on N-doped carbon nanofibers. Catal Sci Technol, 2019, 9: 1998 doi: 10.1039/C9CY00477G
|
[25] |
Wei J C, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells. Bioresour Technol, 2011, 102(20): 9335 doi: 10.1016/j.biortech.2011.07.019
|
[26] |
Hindatu Y, Annuar M S M, Gumel A M. Mini-review: Anode modification for improved performance of microbial fuel cell. Renewable Sustainable Energy Rev, 2017, 73: 236 doi: 10.1016/j.rser.2017.01.138
|
[27] |
Yu B, Li Y H, Feng L. Enhancing the performance of soil microbial fuel cells by using a bentonite-Fe and Fe3O4 modified anode. J Hazard Mater, 2019, 377: 70 doi: 10.1016/j.jhazmat.2019.05.052
|
[28] |
Zeng L Z, Zhang W G, Xia P, et al. Porous Ni0.1Mn0.9O1.45 microellipsoids as high-performance anode electrocatalyst for microbial fuel cells. Biosens Bioelectron, 2018, 102: 351 doi: 10.1016/j.bios.2017.11.046
|
[29] |
Taskan E, Bulak S, Taskan B, et al. Nitinol as a suitable anode material for electricity generation in microbial fuel cells. Bioelectrochemistry, 2019, 128: 118 doi: 10.1016/j.bioelechem.2019.03.008
|
[30] |
Xu H D, Quan X C, Xiao Z T, et al. Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem Eng J, 2018, 335: 539 doi: 10.1016/j.cej.2017.10.159
|
[31] |
Sekar A D, Jayabalan T, Muthukumar H, et al. Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode. Energy, 2019, 172: 173 doi: 10.1016/j.energy.2019.01.102
|
[32] |
Quan X C, Xu H D, Sun B, et al. Anode modification with palladium nanoparticles enhanced Evans Blue removal and power generation in microbial fuel cells. Int Biodeterior Biodegrad, 2018, 132: 94 doi: 10.1016/j.ibiod.2018.01.001
|
[33] |
Pu K B, Ma Q, Cai W F, et al. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem Eng J, 2018, 132: 255 doi: 10.1016/j.bej.2018.01.018
|
[34] |
聶景濤, 郭敏, 張梅, 等. 電沉積聚苯胺納米線及其電化學性質. 北京科技大學學報, 2010, 32(4):494
Nie J T, Guo M, Zhang M, et al. Electrodeposition of polyaniline nanowires and their electrochemical properties. J Univ Sci Technol Beijing, 2010, 32(4): 494
|
[35] |
Zeng L Z, Zhao S F, He M. Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells. J Power Sources, 2018, 376: 33 doi: 10.1016/j.jpowsour.2017.11.071
|
[36] |
Wang Y X, Li W Q, Zong W M, et al. Polyaniline-decorated honeycomb-like structured macroporous carbon composite as an anode modifier for enhanced bioelectricity generation. Sci Total Environ, 2019, 696: 133980 doi: 10.1016/j.scitotenv.2019.133980
|
[37] |
Liu X, Zhao X H, Yu Y Y, et al. Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting. Electrochim Acta, 2017, 255: 41 doi: 10.1016/j.electacta.2017.09.153
|
[38] |
Yin T, Zhang H, Yang G Q, et al. Polyaniline composite TiO2 nanosheets modified carbon paper electrode as a high performance bioanode for microbial fuel cells. Synth Met, 2019, 252: 8 doi: 10.1016/j.synthmet.2019.03.027
|
[39] |
Zhang W Z, Xie B Z, Yang L G, et al. Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell. Bioresour Technol, 2017, 233: 291 doi: 10.1016/j.biortech.2017.02.124
|
[40] |
Yuan H R, Deng L F, Chen Y, et al. MnO2/Polypyrrole/MnO2 multi-walled-nanotube-modified anode for high-performance microbial fuel cells. Electrochim Acta, 2016, 196: 280 doi: 10.1016/j.electacta.2016.02.183
|
[41] |
Li Z L, Yang S K, Song Y N, et al. In-situ modified titanium suboxides with polyaniline/graphene as anode to enhance biovoltage production of microbial fuel cell. Int J Hydrogen Energy, 2019, 44(13): 6862 doi: 10.1016/j.ijhydene.2018.12.106
|
[42] |
Sonawane J M, Patil S A, Ghosh P C, et al. Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. J Power Sources, 2018, 379: 103 doi: 10.1016/j.jpowsour.2018.01.001
|