<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
ZHU Guang-wei, ZHAO Yi-cheng, ZHAO Fan, QI Peng, ZHANG Zhi-hao. Effect of stress annealing on texture and recrystallization behavior of Zr–4 alloy[J]. Chinese Journal of Engineering, 2020, 42(9): 1174-1181. doi: 10.13374/j.issn2095-9389.2019.09.27.004
Citation: ZHU Guang-wei, ZHAO Yi-cheng, ZHAO Fan, QI Peng, ZHANG Zhi-hao. Effect of stress annealing on texture and recrystallization behavior of Zr–4 alloy[J]. Chinese Journal of Engineering, 2020, 42(9): 1174-1181. doi: 10.13374/j.issn2095-9389.2019.09.27.004

Effect of stress annealing on texture and recrystallization behavior of Zr–4 alloy

doi: 10.13374/j.issn2095-9389.2019.09.27.004
More Information
  • Corresponding author: E-mail: ntzzh2279@163.com
  • Received Date: 2019-09-27
  • Publish Date: 2020-09-20
  • The texture of Zr–4 alloy not only affects its irradiation growth performance, but also affects mechanical properties, stress corrosion cracking, and water-side corrosion. Therefore, it is important to control the texture of Zr–4 alloy during processing. The effect of the applied external stress, annealing temperature, and annealing time on texture evolution and recrystallization of Zr–4 alloy is still unclear. Based on controllable process conditions, the stress annealing process of zirconium alloy in practical production was simulated by designing a simple experimental device. The texture and recrystallization behavior of Zr–4 alloy after annealing at different temperatures and stresses were studied by X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) techniques. The results show that applying external stress and increasing annealing temperature significantly change the evolution of recrystallized texture. With an increase in stress and annealing temperature, the texture of the zirconium alloy ($\overline 1 2\overline 1 5$)[$10 \overline 1 0$], and the polar density decreases, thereby resulting in a decrease in material anisotropy. The annealing temperature has a significant effect on the amount of small-angle grain boundary and recrystallization ratio during material recrystallization. With an increase in applied stress and annealing temperature, dynamic recovery and recrystallization occur inside the material. The sub-structures in dynamic recovery and the dislocation sub-structures in the grains that undergo dynamic recrystallization gradually disappear. The small-angle grain boundary in the material recrystallization process is reduced significantly. The process is accelerated and the recrystallization ratio of the material is significantly increased. The application of applied external stress and the increase of annealing temperature are beneficial to the acceleration of the internal recrystallization process of the material. The main results from this paper can guide the optimization of annealing treatment of Zr–4 alloy, and provide a scientific basis for solving the problems encountered in the engineering application of Zr–4 alloy.

     

  • loading
  • [1]
    王麗霞, 張喜燕, 薛祥義, 等. 鋯合金擠壓管坯的組織及織構研究. 稀有金屬材料與工程, 2013, 42(1):153 doi: 10.3969/j.issn.1002-185X.2013.01.031

    Wang L X, Zhang X Y, Xue X Y, et al. Study on the microstructure and texture of zirconium alloy tube. <italic>Rare Met Mater Eng</italic>, 2013, 42(1): 153 doi: 10.3969/j.issn.1002-185X.2013.01.031
    [2]
    Ni J, Zhao Y C, Wang L, et al. Microstructure of Zircaloy–4 alloy during β phase quenching and determination of critical quenching diameter of its rods. <italic>Nucl Mater Energy</italic>, 2018, 17: 158 doi: 10.1016/j.nme.2018.10.014
    [3]
    張寅, 張誠, 袁改煥, 等. 第二相對Zr–Sn–Nb系鋯合金吸氫性能的影響. 稀有金屬材料與工程, 2019, 48(8):2507

    Zhang Y, Zhang C, Yuan G H, et al. Effect of second phase particles on the hydrogen absorption properties of Zr–Sn–Nb zirconium alloys. <italic>Rare Met Mater Eng</italic>, 2019, 48(8): 2507
    [4]
    倪嘉, 王練, 張志豪, 等. Zr–4合金與H13模具鋼的界面換熱行為研究. 稀有金屬材料與工程, 2019, 48(5):1579

    Ni J, Wang L, Zhang Z H, et al. Interfacial heat transfer behavior between Zr–4 alloy and H13 die Steel. <italic>Rare Met Mater Eng</italic>, 2019, 48(5): 1579
    [5]
    趙乙丞, 朱廣偉, 齊鵬, 等. 基于圓環壓縮和擠壓–模擬法的Zr–4合金塑性成形摩擦因子測定. 工程科學學報, 2020, 42(02):209

    Zhao Y C, Zhu G W, Qi P, et al. Measurement of friction factor in plastic forming of Zr–4 alloy based on ring compression and extrusion-simulation. <italic>Chin J Eng</italic>, 2020, 42(02): 209
    [6]
    李麥海, 王興. 鋯合金變形機理及其板材織構演化規律. 鈦工業進展, 2012, 29(6):6

    Li M H, Wang X. The deformation mechanism of zirconium alloy and evolution discipline of its alloys plates texture. <italic>Titanium Ind Prog</italic>, 2012, 29(6): 6
    [7]
    Wang Y N, Huang J C. Texture analysis in hexagonal materials. <italic>Mater Chem Phys</italic>, 2003, 81(1): 11 doi: 10.1016/S0254-0584(03)00168-8
    [8]
    Liu C Z, Li G P, Chu L H, et al. Texture and yielding anisotropy of zircaloy–4 alloy cladding tube produced by cold pilger rolling and annealing. <italic>Mater Sci Eng A</italic>, 2018, 719: 147 doi: 10.1016/j.msea.2018.02.043
    [9]
    徐濱, 于軍輝, 孫國成, 等. 影響Zr–4合金板帶材織構的工藝因素. 金屬世界, 2017(04):28 doi: 10.3969/j.issn.1000-6826.2017.04.06

    Xu B, Yu J H, Sun G C, et al. Influence of Process for Zr–4 Alloy Plate and Strip Texture. <italic>Met World</italic>, 2017(04): 28 doi: 10.3969/j.issn.1000-6826.2017.04.06
    [10]
    彭倩, 沈保羅. 鋯合金的織構及其對性能的影響. 稀有金屬, 2005, 29(6):903 doi: 10.3969/j.issn.0258-7076.2005.06.021

    Peng Q, Shen B L. Texture of zirconium alloy and its effects on properties. <italic>Chin J Rare Met</italic>, 2005, 29(6): 903 doi: 10.3969/j.issn.0258-7076.2005.06.021
    [11]
    武宇, 姚修楠, 田鋒, 等. 軋制工藝對Zr–4合金帶材織構取向及腐蝕性能的影響. 稀有金屬材料與工程, 2012, 41(12):2238 doi: 10.3969/j.issn.1002-185X.2012.12.036

    Wu Y, Yao X N, Tian F, et al. Effect of rolling technology on texture orientation and corrosion performance of Zr–4 zirconium alloy strips. <italic>Rare Met Mater Eng</italic>, 2012, 41(12): 2238 doi: 10.3969/j.issn.1002-185X.2012.12.036
    [12]
    趙林科, 李小寧, 岳強, 等. 加工工藝對Zr–4合金熱軋板材微觀組織的影響. 熱加工工藝, 2018, 47(17):36

    Zhao L K, Li X N, Yue Q, et al. Effect of processing technology on microstructure of Zr–4 alloy hot rolled plates. <italic>Hot Working Technol</italic>, 2018, 47(17): 36
    [13]
    Fuloria D, Kumar N, Jayaganthan R, et al. Microstructural and textural characterization of Zircaloy–4 processed by rolling at different temperatures. <italic>Mater Charact</italic>, 2017, 127: 296 doi: 10.1016/j.matchar.2017.02.020
    [14]
    王衛國, 周邦新. 鋯合金板織構的控制. 核動力工程, 1994, 15(2):158

    Wang W G, Zhou B X. Texture controlling of zircaloy plate. <italic>Nucl Power Eng</italic>, 1994, 15(2): 158
    [15]
    王衛國, 周邦新. 軋制溫度對Zr–4合金板織構的影響. 核動力工程, 1996, 17(3):255

    Wang W G, Zhou B X. Effect of rolling temperature on the textures of Zircaloy–4 plate. <italic>Nucl Power Eng</italic>, 1996, 17(3): 255
    [16]
    李小寧, 王塊社, 于軍輝, 等. 成品退火溫度對Zr–4鋯合金管材變形織構和力學性能的影響. 稀有金屬與硬質合金, 2018, 46(4):73

    Li X N, Wang K S, Yu J H, et al. Effects of finishing annealing temperature on deformation texture and mechanical properties of Zr–4 zirconium alloy tube. <italic>Rare Met Cemented Carbides</italic>, 2018, 46(4): 73
    [17]
    Zeng Q H, Luan B F, Chapuis A, et al. Evolution of crystallographic texture of zirconium alloy during hot deformation. <italic>Rare Met Mater Eng</italic>, 2019, 48(8): 2393
    [18]
    Saintoyant L, Legras L, Brechet Y. E?ect of an applied stress on the recrystallization mechanisms of a zirconium alloy. <italic>Scripta Mater</italic>, 2011, 64(5): 418 doi: 10.1016/j.scriptamat.2010.11.003
    [19]
    Bhaumik S, Molodova X, Gottstein G. Effect of stress on the annealing behavior of severely plastically deformed aluminum alloy 3103. <italic>Mater Sci Eng A</italic>, 2010, 527(21-22): 5826 doi: 10.1016/j.msea.2010.05.053
    [20]
    曾慶輝. 初始取向對鋯合金熱壓縮變形微觀組織及織構演變的影響[學位論文]. 重慶: 重慶大學, 2018

    Zeng Q H. Microstructure and Texture Evolution during Hot Compression of Zirconium Alloy with Different Initial Orientation[Dissertation]. Chongqing: Chongqing University, 2018
    [21]
    姜雁斌. 高能電脈沖在制備AZ91 鎂合金中的應用基礎研究[學位論文]. 北京: 清華大學, 2010

    Jiang Y B. Applied Fundamental Research of the High-density Electropulsing on the Manufacturing of AZ91 Magnesium Alloy Strip[Dissertation]. Beijing: Tsinghua University, 2010
    [22]
    毛衛民, 楊平, 陳冷. 材料織構分析原理與檢測技術. 北京: 冶金工業出版社, 2007

    Mao W M, Yang P, Chen L. Material Texture Analysis Principle and Detection Technology. Beijing: Metallurgical Industry Press, 2007
    [23]
    陳欣. Zr–4 合金變形及退火過程中組織與織構演變[學位論文]. 重慶: 重慶大學, 2018

    Chen X. Microstructure and Texture Evolution of Zr–4 Alloy in Deformation and Subsequent Annealing[Dissertation]. Chongqing: Chongqing University, 2018
    [24]
    He W J, Chapuis A, Chen X, et al. Effect of loading direction on the deformation and annealing behavior of a zirconium alloy. <italic>Mater Sci Eng A</italic>, 2018, 734: 364 doi: 10.1016/j.msea.2018.08.013
    [25]
    Chakravarty J K, Kapoor R, Sarkar A, et al. Dynamic recrystallization in zirconium alloys. <italic>J ASTM Int</italic>, 2010, 7(8): 1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (1622) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频