<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
LI Xu, GAO Wen-cheng, WEN Jian-kang, WU Biao, LIU Xue. Technology status and research progress of zinc bioleaching[J]. Chinese Journal of Engineering, 2020, 42(6): 693-703. doi: 10.13374/j.issn2095-9389.2019.09.24.001
Citation: LI Xu, GAO Wen-cheng, WEN Jian-kang, WU Biao, LIU Xue. Technology status and research progress of zinc bioleaching[J]. Chinese Journal of Engineering, 2020, 42(6): 693-703. doi: 10.13374/j.issn2095-9389.2019.09.24.001

Technology status and research progress of zinc bioleaching

doi: 10.13374/j.issn2095-9389.2019.09.24.001
More Information
  • Corresponding author: E-mail: kang3412@126.com
  • Received Date: 2019-09-24
  • Publish Date: 2020-06-01
  • Zinc is a nonferrous metal necessary for modern industry and an important strategic resource. It ranks fourth among all metals in terms of world production after iron, aluminum, and copper. Zinc sulfide ore is the most important zinc-producing mineral in the world, followed by associated zinc oxide ore and zinc-containing secondary resources. China is rich in zinc resources. Most of China’s lead–zinc and copper–zinc deposits are mainly lead–zinc integrated deposits, lead–zinc sulfide deposits, and other associated components. These types of mineral resources lead to wastage of resources in the development and utilization processes and affect the subsequent smelting process, which places considerable pressure on the production efficiency and ecological environment. The current mining and metallurgical industry vigorously promotes industrial development and has shifted in the favor of recycling, low-carbon, and green technologies. The biological leaching technology, as a green and low-carbon wet metallurgy technology, meets the current environmental protection policy requirements. This technology uses microorganisms and their metabolites to soak valuable metals in ores and has many advantages such as simple process, environmental protection, and capability to process low-grade ores. With the development of hydrometallurgical technology, the biological leaching technology of zinc from various types of low-grade zinc resources has attracted researchers’ attention and shown considerable application potential. First, this study introduced the mineral characteristics of zinc resources and analyzed their bioleachability. Then, the bioleaching process of zinc was summarized, and the leaching bacteria, electrochemistry, thermodynamics, kinetics, and leaching mechanism were systemically introduced. Furthermore, the current situation and/or progress of zinc bioleaching technology were generalized. Finally, the development trend of zinc bioleaching process and future research hotspots were considered. This study shows that the breeding of highly efficient bioleaching bacteria and the corresponding technology and equipment inventions are the current research hotspots and can also be the development directions for zinc bioleaching in the future. This will help ensure rapid and effective development of the zinc bioleaching technology.

     

  • loading
  • [1]
    石紹淵, 張廣積, 趙月峰, 等. 硫化鋅礦的生物浸出. 國外金屬礦選礦, 2002(02):12

    Shi S Y, Zhang G J, Zhao Y F, et al. Bioleaching of zinc sulfide ore. Metallic Ore Dressing Abroad, 2002(02): 12
    [2]
    駱任. W-1抑制劑對內蒙古某浮選鉛精礦降鋅選礦試驗研究. 湖南有色金屬, 2018, 34(2):15

    Luo R. Experimental study of W-1 inhibitor on zinc flotation of a flotation lead concentrate in Inner Mongolia. Hunan Nonferrous Met, 2018, 34(2): 15
    [3]
    孫志健. 青海某難選鉛鋅礦選礦試驗研究. 有色金屬(選礦部分), 2016(5):22

    Sun Z J. Processing research refractory lead-zinc ore in Qinghai. Nonferrous Met (Miner Process Sect), 2016(5): 22
    [4]
    劉曉, 張宇, 王楠, 等. 我國鉛鋅礦資源現狀及其發展對策研究. 中國礦業, 2015, 24(增刊1): 6

    Liu X, Zhang Y, Wang N, et al. Pb?Zn metal resources situation and suggestion for Pb?Zn metals industry development in China. China Min Mag, 2015, 24(Suppl 1): 6
    [5]
    溫建康. 生物冶金的現狀與發展. 中國有色金屬, 2008(10):74

    Wen J K. Current status and development of biometallurgy. China Nonferrous Met, 2008(10): 74
    [6]
    李廣澤, 王洪江, 吳愛祥, 等. 生物浸礦技術研究現狀. 濕法冶金, 2014, 33(02):82

    Li G Z, Wang H J, Wu A X, et al. Research status on bioleaching of ores. Hydrometallurgy China, 2014, 33(02): 82
    [7]
    王建雄, 羅印敏, 沈立俊. 某鉛鋅礦石工藝礦物學研究. 湖南有色金屬, 2003, 19(5):4

    Wang J X, Luo Y M, Shen L J. Craft mineralogy research of lead-zinc ore somewhere. Hunan Nonferrous Met, 2003, 19(5): 4
    [8]
    童雄, 何劍, 饒峰, 等. 云南都龍高鐵閃鋅礦的活化試驗研究. 礦冶工程, 2006, 26(4):19

    Tong X, He J, Rao F, et al. Experimental study on activation of high iron-bearing marmatite. Min Metall Eng, 2006, 26(4): 19
    [9]
    單連軍. 內蒙古敖包吐鉛鋅礦礦石工藝礦物學研究及礦石難選因素分析. 有色礦冶, 2018, 34(5):19

    Shan L J. Mineralogical study on the refractory factor of one Pb?Zn ore originated from Inner Mongolia Aobaotu and discussion on the refractory factors. Non-ferrous Min Metall, 2018, 34(5): 19
    [10]
    Saririchi T, Azad R R, Arabian D, et al. On the optimization of sphalerite bioleaching; the inspection of intermittent irrigation, type of agglomeration, feed formulation and their interactions on the bioleaching of low-grade zinc sulfide ores. Chem Eng J, 2012, 187: 217 doi: 10.1016/j.cej.2010.10.013
    [11]
    王蕾, 夏金蘭, 朱泓睿, 等. 微生物?礦物相互作用及界面顯微分析研究進展. 微生物學通報, 2017, 44(3):716

    Wang L, Xia J L, Zhu H R, et al. Progress on research of microbe?mineral interaction and interfacial micro-analysis. Microbiol China, 2017, 44(3): 716
    [12]
    Brierley C L. Biohydrometallurgical prospects. Hydrometallurgy, 2010, 104(3-4): 324 doi: 10.1016/j.hydromet.2010.03.021
    [13]
    Mehrabani J V, Shafaei S Z, Noaparast M, et al. Bioleaching of sphalerite sample from Kooshk lead–zinc tailing dam. Trans Nonferrous Met Soc China, 2013, 23(12): 3763 doi: 10.1016/S1003-6326(13)62927-1
    [14]
    武彪, 溫建康, 劉學, 等. 一種浸礦菌及低品位硫化鋅礦的選擇性生物浸出工藝: 中國專利, 200810227389.8. 2008-11-27

    Wu B, Wen J K, Liu X, et al. A Selective Bioleaching Process for Leaching Bacteria and Low-grade Zinc Sulfide Ore: China Patent, 200810227389.8. 2008-11-27
    [15]
    李珊珊. 鋅冶煉廢渣資源化利用的研究[學位論文]. 長沙: 中南大學, 2012

    Li S S. Study on the Resources and Utilization of Smelting Waste of Zinc[Dissertation]. Changsha: Central South University, 2012
    [16]
    Sorokin D Y, Kuenen J G. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev, 2005, 29(4): 685 doi: 10.1016/j.femsre.2004.10.005
    [17]
    Sorokin D Y, Cherepanov A, De Vries S, et al. Identification of cytochrome c oxidase in the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium ‘Thioalcalomicrobium aerophilum’ strain AL 3. FEMS Microbiol Lett, 1999, 179(1): 91 doi: 10.1111/j.1574-6968.1999.tb08713.x
    [18]
    Willscher S, Bosecker K. Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump. Hydrometallurgy, 2003, 71(1-2): 257 doi: 10.1016/S0304-386X(03)00164-6
    [19]
    熊有為, 王洪江, 吳愛祥, 等. 堿性微生物浸礦研究現狀及發展趨勢. 濕法冶金, 2012, 31(4):199

    Xiong Y W, Wang H J, Wu A X, et al. Research status and development trend on bioleaching with alkaline microbes. Hydrometallurgy, 2012, 31(4): 199
    [20]
    Shabani M A, Irannajad M, Meshkini M, et al. Investigations on bioleaching of copper and zinc oxide ores. Trans Indian Inst Met, 2019, 72(3): 609 doi: 10.1007/s12666-018-1509-3
    [21]
    Y·科西尼, 周廷熙, 李長根. 嗜熱嗜酸A.b.酸桿菌浸出硫化鋅精礦. 國外金屬礦選礦, 2000(9):31

    Cocini Y, Zhou T X, Li C G. Leaching of zinc sulfide concentrate by thermophilic acidophilic A.b. acid bacteria. Metallic Ore Dress Abroad, 2000(9): 31
    [22]
    李啊林, 黃松濤, 溫建康, 等. 中等嗜熱菌浸出德興黃銅礦的試驗研究. 金屬礦山, 2011(11):78

    Li A L, Huang S T, Wen J K, et al. Research on the bioleaching of chalcopyrite from Dexing copper mine by moderate thermophiles. Met Mine, 2011(11): 78
    [23]
    劉偉芳, 王洪江, 張旭, 等. 某硫化銅礦尾礦堿性細菌浸出試驗研究. 礦冶工程, 2011, 31(3):89

    Liu W F, Wang H J, Zhang X, et al. Experimental study on bioleaching of copper sulfide tailings under alkaline conditions. Min Metall Eng, 2011, 31(3): 89
    [24]
    Willscher S, Bosecker K. Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump. Hydrometallurgy, 2003, 71(1): 257
    [25]
    Shabani M A, Irannajad M, Meshkini M, et al. Investigations on bioleaching of copper and zinc oxide ores. Trans Indian Inst Met, 2019, 72(3): 609 doi: 10.1007/s12666-018-1509-3
    [26]
    Richter C, Kalka H, Myers E, et al. Constraints of bioleaching in in-situ recovery applications. Hydrometallurgy, 2018, 178: 209 doi: 10.1016/j.hydromet.2018.04.008
    [27]
    Schippers A, Hedrich S, Vasters J, et al. Biomining: metal recovery from ores with microorganisms//Geobiotechnology I. Heidelberg: Springer, 2013
    [28]
    Fomchenko N V, Muravyov M I. Selective leaching of zinc from copper-zinc concentrate. Appl Biochem Microbiol, 2017, 53(1): 73 doi: 10.1134/S0003683817010197
    [29]
    Lizama H M, Fairweather M J, Dai Z, et al. How does bioleaching start? Hydrometallurgy, 2003, 69(1-3): 109 doi: 10.1016/S0304-386X(03)00028-8
    [30]
    Fowler T A, Crundwell F K. The role of Thiobacillus ferrooxidans, in the bacterial leaching of zinc sulphide. Process Metall, 1999, 9: 273 doi: 10.1016/S1572-4409(99)80027-3
    [31]
    Vera M, Schippers A, Sand W. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol, 2013, 97(17): 7529 doi: 10.1007/s00253-013-4954-2
    [32]
    Schippers A, Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol, 1999, 65(1): 319 doi: 10.1128/AEM.65.1.319-321.1999
    [33]
    Zhao L, Wang Y, Jin L, et al. Decomposition of hydrogen sulfide in non-thermal plasma aided by supported CdS and ZnS semiconductors. Green Chem, 2013, 15(6): 1509 doi: 10.1039/c3gc00092c
    [34]
    Chen S, Qiu G Z, Qin W Q, et al. Bioleaching of sphalerite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans cultured in 9K medium modified with pyrrhotite. J Cent South Univ Technol, 2008, 15(04): 79
    [35]
    Schippers A. Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils. Spe Paper Geolog Soc Am, 2004, 379: 49
    [36]
    Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology, 2003, 149(7): 1699 doi: 10.1099/mic.0.26212-0
    [37]
    Balci N, Mayer B, Shanks Ⅲ W C, et al. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochim Cosmochim Acta, 2012, 77: 335 doi: 10.1016/j.gca.2011.10.022
    [38]
    Gu G H, Sun X J, Hu K T, et al. Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans. Trans Nonferrous Met Soc China, 2012, 22(5): 1250 doi: 10.1016/S1003-6326(11)61312-5
    [39]
    Jyothi N, Sudha K N, Natarajan K A. Electrochemical aspects of selective bioleaching of sphalerite and chalcopyrite from mixed sulphides. Int J Miner Process, 1989, 27(3-4): 189 doi: 10.1016/0301-7516(89)90064-1
    [40]
    Ahonen L, Tuovinen O H. Silver catalysis of the bacterial leaching of chalcopyrite-containing ore material in column reactors. Miner Eng, 1990, 3(5): 437 doi: 10.1016/0892-6875(90)90037-C
    [41]
    K·A·蘭特拉金, 王軍. 硫化礦生物浸出電化學. 國外金屬礦選礦, 1997(2):44

    Lantrajin K A, Wang J. Bioleaching electrochemistry of sulfide ores. Metallic Ore Dress Abroad, 1997(2): 44
    [42]
    張英杰, 楊顯萬. 硫化礦生物浸出過程的熱力學. 貴金屬, 1998, 19(3):26

    Zhang Y J, Yang X W. Thermodynamics during bioleaching processes of sulfide-ores. Precious Met, 1998, 19(3): 26
    [43]
    Ghassa S, Noaparast M, Shafaei S Z, et al. A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents. Hydrometallurgy, 2017, 171: 362 doi: 10.1016/j.hydromet.2017.06.012
    [44]
    Coni? V T, Vujasinovi? M M R, Truji? V K, et al. Copper, zinc, and iron bioleaching from polymetallic sulphide concentrate. Trans Nonferrous Met Soc China, 2014, 24(11): 3688 doi: 10.1016/S1003-6326(14)63516-0
    [45]
    周秀麗, 鄭越, 王淑華, 等. 電子垃圾生物浸出的電化學強化機制. 環境化學, 2017, 36(10):15

    Zhou X L, Zheng Y, Wang S H, et al. Mechanisms of bioleaching electrochemstry-enhanced of electronic wastes. Environmentally Chemistry, 2017, 36(10): 15
    [46]
    Sajjad W, Zheng G D, Din G, et al. Metals extraction from sulfide ores with microorganisms: the bioleaching technology and recent developments. Trans Indian Inst Met, 2019, 72(3): 559 doi: 10.1007/s12666-018-1516-4
    [47]
    Kumar C G, Mamidyala S K, Sujitha P, et al. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Biotechnol Prog, 2012, 28(6): 1507 doi: 10.1002/btpr.1634
    [48]
    Pir?llo M P S, Mariano A P, Lovaglio R B, et al. Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon-contaminated site. J Appl Microbiol, 2008, 105(5): 1484 doi: 10.1111/j.1365-2672.2008.03893.x
    [49]
    Diaz M A, De Ranson I U, Dorta B, et al. Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil Sediment Contamin Int J, 2015, 24(1): 16 doi: 10.1080/15320383.2014.907239
    [50]
    Yang Z H, Zhang Z, Chai L Y, et al. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J Hazard Mater, 2016, 301: 145 doi: 10.1016/j.jhazmat.2015.08.047
    [51]
    Zhu Y, Zeng G M, Zhang P Y, et al. Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge. Bioresour Technol, 2013, 142: 530 doi: 10.1016/j.biortech.2013.05.070
    [52]
    Charikinya E, Bradshaw S, Becker M. Characterising and quantifying microwave induced damage in coarse sphalerite ore particles. Miner Eng, 2015, 82: 14 doi: 10.1016/j.mineng.2015.07.020
    [53]
    Natarajan G, Ting Y P. Gold biorecovery from e-waste: an improved strategy through spent medium leaching with pH modification. Chemosphere, 2015, 136: 232 doi: 10.1016/j.chemosphere.2015.05.046
    [54]
    牛志睿, 李彤, 蘇沉, 等. 廢舊鋅錳電池生物淋濾-水熱法制備納米錳鋅鐵氧體. 環境科學學報, 2017, 37(9):3356

    Niu Z R, Li T, Su C, et al. Preparation of Mn-Zn ferrite from spent Zn?Mn batteries using bioleaching liquor as precursor. Acta Sci Circum, 2017, 37(9): 3356
    [55]
    Kaksonen A H, Perrot F, Morris C, et al. Evaluation of submerged bio-oxidation concept for refractory gold ores. Hydrometallurgy, 2014, 141: 117 doi: 10.1016/j.hydromet.2013.10.012
    [56]
    Haschke M, Ahmadian J, Zeidler L, et al. In-situ recovery of critical technology elements. Procedia Eng, 2016, 138: 248 doi: 10.1016/j.proeng.2016.02.082
    [57]
    Pakostova E, Grail B M, Johnson D B. Indirect oxidative bioleaching of a polymetallic black schist sulfide ore. Miner Eng, 2017, 106: 102 doi: 10.1016/j.mineng.2016.08.028
    [58]
    孫建之, 陳勃偉, 溫建康, 等. 鎳礦濕法冶金技術應用進展及研究展望. 中國有色金屬學報, 2018, 28(2):356 doi: 10.1016/S1003-6326(18)64669-2

    Sun J Z, Chen B W, Wen J K, et al. Application and research progresses of hydrometallurgy technology for nickel ore. Chin J Nonferrous Met, 2018, 28(2): 356 doi: 10.1016/S1003-6326(18)64669-2
    [59]
    Riekkola-Vanhanen M. Talvivaara Sotkamo mine—bioleaching of a polymetallic nickel ore in subarctic climate. Nova Biotechnol, 2010, 10(1): 7
    [60]
    傅開彬, 寧燕, 王進明, 等. 四川里伍銅礦尾礦生物浸出液中回收銅、鋅的研究. 西南科技大學學報, 2017, 32(1):10

    Fu K B, Ning Y, Wang J M, et al. Recovering copper and zinc from bioleaching lixivium of Liwu Copper Mine tailings by process of solvent extraction-precipitation. J Southwest Univ Sci Technol, 2017, 32(1): 10
    [61]
    孫傳堯,周俊武,賈木欣,等. 基因礦物加工工程研究. 有色金屬(選礦部分), 2018(1):1

    Sun C Y, Zhou J W, Jia M X, et al. Research on genetic mineral processing engineering. Nonferrous Met (Miner Process Sect), 2018(1): 1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views (3137) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频