Citation: | TAN Bo, WANG Li-jun, YAN Bai-jun, CHOU Kuo-chih. Kinetics of chlorination of vanadium slag by microwave heating[J]. Chinese Journal of Engineering, 2020, 42(9): 1157-1164. doi: 10.13374/j.issn2095-9389.2019.09.20.003 |
[1] |
劉淑清. 近年全球釩制品生產現狀及發展趨勢. 鋼鐵釩鈦, 2014, 35(3):55 doi: 10.7513/j.issn.1004-7638.2014.03.013
Liu S Q. Production status and development trend of vanadium product in world in recent years. <italic>Iron Steel Van Tit</italic>, 2014, 35(3): 55 doi: 10.7513/j.issn.1004-7638.2014.03.013
|
[2] |
Liu B, Du H, Wang S N, et al. A novel method to extract vanadium and chromium from vanadium slag using molten NaOH-NaNO<sub>3</sub> binary system. <italic>AIChE J</italic>, 2013, 59(2): 541 doi: 10.1002/aic.13819
|
[3] |
郭昕, 王玲, 鄭康豪, 等. 釩渣提釩工藝及研究進展. 中國礦業, 2016, 25(增刊1): 435
Guo X, Wang L, Zheng K H, et al. Research progress of extraction technology for vanadium from vanadium stags. China Min Mag, 2016, 25(Suppl 1): 435
|
[4] |
Fang H X, Li H Y, Xie B. Effective chromium extraction from chromium-containing vanadium slag by sodium roasting and water leaching. <italic>ISIJ Int</italic>, 2012, 52(11): 1958 doi: 10.2355/isijinternational.52.1958
|
[5] |
Lu G Z, Zhang T A, Zhang G Q, et al. Process and kinetic assessment of vanadium extraction from vanadium slag using calcification roasting and sodium carbonate leaching. <italic>JOM</italic>, 2019, 71(9): 4600
|
[6] |
Li X S, Xie B, Wang G E, et al. Oxidation process of low-grade vanadium slag in presence of Na<sub>2</sub>CO<sub>3</sub>. <italic>Trans Nonferrous Met Soc China</italic>, 2011, 21(8): 1860 doi: 10.1016/S1003-6326(11)60942-4
|
[7] |
Fan C L, Zhai X J, Fu Y, et al. Extraction of nickel and cobalt from reduced limonitic laterite using a selective chlorination–water leaching process. <italic>Hydrometallurgy</italic>, 2010, 105(1-2): 191 doi: 10.1016/j.hydromet.2010.08.003
|
[8] |
Abbasalizadeh A, Seetharaman S, Teng L D, et al. Highlights of the salt extraction process. <italic>JOM</italic>, 2013, 65(11): 1552 doi: 10.1007/s11837-013-0752-7
|
[9] |
Liu S Y, Wang L J, Chou K. A novel process for simultaneous extraction of iron, vanadium, manganese, chromium, and titanium from vanadium slag by molten salt electrolysis. <italic>Ind Eng Chem Res</italic>, 2016, 55(50): 12962 doi: 10.1021/acs.iecr.6b03682
|
[10] |
Liu S Y, Li S J, Wu S, et al. A novel method for vanadium slag comprehensive utilization to synthesize Zn–Mn ferrite and Fe–V–Cr alloy. <italic>J Hazard Mater</italic>, 2018, 354: 99 doi: 10.1016/j.jhazmat.2018.04.061
|
[11] |
Jones D A, Lelyveld T P, Mavrofidis S D, et al. Microwave heating applications in environmental engineering—a review. <italic>Resources Conserv Recycl</italic>, 2002, 34(2): 75 doi: 10.1016/S0921-3449(01)00088-X
|
[12] |
De La Hoz A, Diaz-Ortiz A, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. <italic>Chem Soc Rev</italic>, 2005, 34(2): 164 doi: 10.1039/B411438H
|
[13] |
佟志芳, 畢詩文, 楊毅宏. 微波加熱在冶金領域中應用研究現狀. 材料與冶金學報, 2004, 3(2):117 doi: 10.3969/j.issn.1671-6620.2004.02.008
Tong Z F, Bi S W, Yang Y H. Present situation of study on microwave heating application in metallurgy. <italic>J Mater Metall</italic>, 2004, 3(2): 117 doi: 10.3969/j.issn.1671-6620.2004.02.008
|
[14] |
De Castro E R, Mourao M B, Jermolovicius L A, et al. Carbothermal reduction of iron ore applying microwave energy. <italic>Steel Res Int</italic>, 2012, 83(2): 131 doi: 10.1002/srin.201100186
|
[15] |
Al-Harahsheh M, Kingman S W. Microwave-assisted leaching—a review. <italic>Hydrometallurgy</italic>, 2004, 73(3-4): 189 doi: 10.1016/j.hydromet.2003.10.006
|
[16] |
Kingman S W, Jackson K, Bradshaw S M, et al. An investigation into the influence of microwave treatment on mineral ore comminution. <italic>Powder Technol</italic>, 2004, 146(3): 176 doi: 10.1016/j.powtec.2004.08.006
|
[17] |
Sahoo B K, De S, Meikap B C. Improvement of grinding characteristics of Indian coal by microwave pre-treatment. <italic>Fuel Process Technol</italic>, 2011, 92(10): 1920 doi: 10.1016/j.fuproc.2011.05.012
|
[18] |
Hao H, Liu H X, Liu Y, et al. Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> template synthesised by microwave assisted molten salt method. <italic>Mater Res Innovations</italic>, 2007, 11(4): 185 doi: 10.1179/143307507X246602
|
[19] |
Huang Z, Deng X G, Liu J H, et al. Preparation of CaZrO<sub>3</sub> powders by a microwave-assisted molten salt method. <italic>J Ceram Soc Jpn</italic>, 2016, 124(5): 593 doi: 10.2109/jcersj2.15309
|
[20] |
Zhang G Q, Zhang T A, Lü G Z, et al. Effects of microwave roasting on the kinetics of extracting vanadium from vanadium slag. <italic>JOM</italic>, 2016, 68(2): 577 doi: 10.1007/s11837-015-1736-6
|
[21] |
Zhang X F, Liu F G, Xue X X, et al. Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content. <italic>J Alloys Compd</italic>, 2016, 686: 356 doi: 10.1016/j.jallcom.2016.06.038
|
[22] |
Starink M J. A new method for the derivation of activation energies from experiments performed at constant heating rate. <italic>Thermochim Acta</italic>, 1996, 288(1-2): 97 doi: 10.1016/S0040-6031(96)03053-5
|
[23] |
Liu C, Peng J H, Ma A Y, et al. Study on non-isothermal kinetics of the thermal desorption of mercury from spent mercuric chloride catalyst. <italic>J Hazard Mater</italic>, 2017, 322: 325 doi: 10.1016/j.jhazmat.2016.09.063
|
[24] |
Menéndez J A, Arenillas A, Fidalgo B, et al. Microwave heating processes involving carbon materials. <italic>Fuel Process Technol</italic>, 2010, 91(1): 1 doi: 10.1016/j.fuproc.2009.08.021
|
[25] |
Liu C, Peng J H, Liu J, et al. Catalytic removal of mercury from waste carbonaceous catalyst by microwave heating. <italic>J Hazard Mater</italic>, 2018, 358: 198 doi: 10.1016/j.jhazmat.2018.06.065
|