<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
TAN Bo, WANG Li-jun, YAN Bai-jun, CHOU Kuo-chih. Kinetics of chlorination of vanadium slag by microwave heating[J]. Chinese Journal of Engineering, 2020, 42(9): 1157-1164. doi: 10.13374/j.issn2095-9389.2019.09.20.003
Citation: TAN Bo, WANG Li-jun, YAN Bai-jun, CHOU Kuo-chih. Kinetics of chlorination of vanadium slag by microwave heating[J]. Chinese Journal of Engineering, 2020, 42(9): 1157-1164. doi: 10.13374/j.issn2095-9389.2019.09.20.003

Kinetics of chlorination of vanadium slag by microwave heating

doi: 10.13374/j.issn2095-9389.2019.09.20.003
More Information
  • Microwave heating was used in this study to chlorinate the extraction of Fe, Mn, V, and Cr from vanadium slag using AlCl3 molten salt at a temperature range from 500 to 800 °C. Microwave heating chlorination kinetics was studied in a non-isothermal mode. The effects of the AlCl3/vanadium slag mass ratio and molten salt ratio on the extraction rate of chlorination peoducts were investigated. The structure and morphology evolution of microwave heating chlorination products were characterized by X-ray diffraction and scanning electron microscope with energy dispersive spectrometer. The results show that the highest extraction rate of the five elements (Fe, Mn, V, Cr, and Ti) can be achieved as 91.66%, 92.96%, 82.67%, 75.82% and 63.14%, when the mass ratios of AlCl3/vanadium slag and NaCl–KCl/AlCl3 are 1.5 and 1.66, respectively. These extraction rates in the microwave heating mode for 30 min are reached and exceeded by 6 h in the conventional heating method. Microwave heating will minimize the chlorination time and reduce the volatilization of AlCl3. Based on the thermodynamics and kinetic analysis, the different phases of vanadium slag can be chlorinated using AlCl3 in the range from 400 to 800 °C, and the olivine phase is superior to the spinel phase in chlorination. In addition, the chlorination rates of V and Cr are slower than those of Fe and Mn, and increasing the reaction time is advantageous for the chlorination of V and Cr. The chlorination of Fe and Mn is controlled by diffusion, and the non-isothermal diffusion activation energies of Fe and Mn are 17.02 and 17.10 kJ·mol?1, respectively. In contrast, the chlorination of V and Cr is limited in the interfacial chemical reaction step, for whom the activation energies give 40.00 and 50.92 kJ·mol?1, respectively. The combination effect of the microwave and molten salt on the chlorinating vanadium slag can be attributed to the enhancement of the diffusion and local chemical reaction.

     

  • loading
  • [1]
    劉淑清. 近年全球釩制品生產現狀及發展趨勢. 鋼鐵釩鈦, 2014, 35(3):55 doi: 10.7513/j.issn.1004-7638.2014.03.013

    Liu S Q. Production status and development trend of vanadium product in world in recent years. <italic>Iron Steel Van Tit</italic>, 2014, 35(3): 55 doi: 10.7513/j.issn.1004-7638.2014.03.013
    [2]
    Liu B, Du H, Wang S N, et al. A novel method to extract vanadium and chromium from vanadium slag using molten NaOH-NaNO<sub>3</sub> binary system. <italic>AIChE J</italic>, 2013, 59(2): 541 doi: 10.1002/aic.13819
    [3]
    郭昕, 王玲, 鄭康豪, 等. 釩渣提釩工藝及研究進展. 中國礦業, 2016, 25(增刊1): 435

    Guo X, Wang L, Zheng K H, et al. Research progress of extraction technology for vanadium from vanadium stags. China Min Mag, 2016, 25(Suppl 1): 435
    [4]
    Fang H X, Li H Y, Xie B. Effective chromium extraction from chromium-containing vanadium slag by sodium roasting and water leaching. <italic>ISIJ Int</italic>, 2012, 52(11): 1958 doi: 10.2355/isijinternational.52.1958
    [5]
    Lu G Z, Zhang T A, Zhang G Q, et al. Process and kinetic assessment of vanadium extraction from vanadium slag using calcification roasting and sodium carbonate leaching. <italic>JOM</italic>, 2019, 71(9): 4600
    [6]
    Li X S, Xie B, Wang G E, et al. Oxidation process of low-grade vanadium slag in presence of Na<sub>2</sub>CO<sub>3</sub>. <italic>Trans Nonferrous Met Soc China</italic>, 2011, 21(8): 1860 doi: 10.1016/S1003-6326(11)60942-4
    [7]
    Fan C L, Zhai X J, Fu Y, et al. Extraction of nickel and cobalt from reduced limonitic laterite using a selective chlorination–water leaching process. <italic>Hydrometallurgy</italic>, 2010, 105(1-2): 191 doi: 10.1016/j.hydromet.2010.08.003
    [8]
    Abbasalizadeh A, Seetharaman S, Teng L D, et al. Highlights of the salt extraction process. <italic>JOM</italic>, 2013, 65(11): 1552 doi: 10.1007/s11837-013-0752-7
    [9]
    Liu S Y, Wang L J, Chou K. A novel process for simultaneous extraction of iron, vanadium, manganese, chromium, and titanium from vanadium slag by molten salt electrolysis. <italic>Ind Eng Chem Res</italic>, 2016, 55(50): 12962 doi: 10.1021/acs.iecr.6b03682
    [10]
    Liu S Y, Li S J, Wu S, et al. A novel method for vanadium slag comprehensive utilization to synthesize Zn–Mn ferrite and Fe–V–Cr alloy. <italic>J Hazard Mater</italic>, 2018, 354: 99 doi: 10.1016/j.jhazmat.2018.04.061
    [11]
    Jones D A, Lelyveld T P, Mavrofidis S D, et al. Microwave heating applications in environmental engineering—a review. <italic>Resources Conserv Recycl</italic>, 2002, 34(2): 75 doi: 10.1016/S0921-3449(01)00088-X
    [12]
    De La Hoz A, Diaz-Ortiz A, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. <italic>Chem Soc Rev</italic>, 2005, 34(2): 164 doi: 10.1039/B411438H
    [13]
    佟志芳, 畢詩文, 楊毅宏. 微波加熱在冶金領域中應用研究現狀. 材料與冶金學報, 2004, 3(2):117 doi: 10.3969/j.issn.1671-6620.2004.02.008

    Tong Z F, Bi S W, Yang Y H. Present situation of study on microwave heating application in metallurgy. <italic>J Mater Metall</italic>, 2004, 3(2): 117 doi: 10.3969/j.issn.1671-6620.2004.02.008
    [14]
    De Castro E R, Mourao M B, Jermolovicius L A, et al. Carbothermal reduction of iron ore applying microwave energy. <italic>Steel Res Int</italic>, 2012, 83(2): 131 doi: 10.1002/srin.201100186
    [15]
    Al-Harahsheh M, Kingman S W. Microwave-assisted leaching—a review. <italic>Hydrometallurgy</italic>, 2004, 73(3-4): 189 doi: 10.1016/j.hydromet.2003.10.006
    [16]
    Kingman S W, Jackson K, Bradshaw S M, et al. An investigation into the influence of microwave treatment on mineral ore comminution. <italic>Powder Technol</italic>, 2004, 146(3): 176 doi: 10.1016/j.powtec.2004.08.006
    [17]
    Sahoo B K, De S, Meikap B C. Improvement of grinding characteristics of Indian coal by microwave pre-treatment. <italic>Fuel Process Technol</italic>, 2011, 92(10): 1920 doi: 10.1016/j.fuproc.2011.05.012
    [18]
    Hao H, Liu H X, Liu Y, et al. Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> template synthesised by microwave assisted molten salt method. <italic>Mater Res Innovations</italic>, 2007, 11(4): 185 doi: 10.1179/143307507X246602
    [19]
    Huang Z, Deng X G, Liu J H, et al. Preparation of CaZrO<sub>3</sub> powders by a microwave-assisted molten salt method. <italic>J Ceram Soc Jpn</italic>, 2016, 124(5): 593 doi: 10.2109/jcersj2.15309
    [20]
    Zhang G Q, Zhang T A, Lü G Z, et al. Effects of microwave roasting on the kinetics of extracting vanadium from vanadium slag. <italic>JOM</italic>, 2016, 68(2): 577 doi: 10.1007/s11837-015-1736-6
    [21]
    Zhang X F, Liu F G, Xue X X, et al. Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content. <italic>J Alloys Compd</italic>, 2016, 686: 356 doi: 10.1016/j.jallcom.2016.06.038
    [22]
    Starink M J. A new method for the derivation of activation energies from experiments performed at constant heating rate. <italic>Thermochim Acta</italic>, 1996, 288(1-2): 97 doi: 10.1016/S0040-6031(96)03053-5
    [23]
    Liu C, Peng J H, Ma A Y, et al. Study on non-isothermal kinetics of the thermal desorption of mercury from spent mercuric chloride catalyst. <italic>J Hazard Mater</italic>, 2017, 322: 325 doi: 10.1016/j.jhazmat.2016.09.063
    [24]
    Menéndez J A, Arenillas A, Fidalgo B, et al. Microwave heating processes involving carbon materials. <italic>Fuel Process Technol</italic>, 2010, 91(1): 1 doi: 10.1016/j.fuproc.2009.08.021
    [25]
    Liu C, Peng J H, Liu J, et al. Catalytic removal of mercury from waste carbonaceous catalyst by microwave heating. <italic>J Hazard Mater</italic>, 2018, 358: 198 doi: 10.1016/j.jhazmat.2018.06.065
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (1623) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频