Citation: | WANG Huan, ZHU Wen-qiu, WU Yue-zhong, HE Pin-jie, WAN Lan-jun. Named entity recognition based on equipment and fault field of CNC machine tools[J]. Chinese Journal of Engineering, 2020, 42(4): 476-482. doi: 10.13374/j.issn2095-9389.2019.09.17.002 |
[1] |
曾建電, 王田, 賈維嘉, 等. 傳感云研究綜述. 計算機研究與發展, 2017, 54(5):925 doi: 10.7544/issn1000-1239.2017.20160492
Zeng J D, Wang T, Jia W J, et al. A survey on sensor-cloud. J Comput Res Dev, 2017, 54(5): 925 doi: 10.7544/issn1000-1239.2017.20160492
|
[2] |
王田, 沈雪微, 羅皓, 等. 基于霧計算的可信傳感云研究進展. 通信學報, 2019, 40(3):170 doi: 10.11959/j.issn.1000-436x.2019068
Wang T, Shen X W, Luo H, et al. Research progress of trusted sensor-cloud based on fog computing. J Commun, 2019, 40(3): 170 doi: 10.11959/j.issn.1000-436x.2019068
|
[3] |
李江昀, 趙義凱, 薛卓爾, 等. 深度神經網絡模型壓縮綜述. 工程科學學報, 2019, 41(10):1229
Li J Y, Zhao Y K, Xue Z E, et al. A survey of model compression for deep neural networks. Chin J Eng, 2019, 41(10): 1229
|
[4] |
Bikel D M, Miller S, Schwartz R, et al. Nymble: a high-performance learning name-finder[J/OL]. arXiv preprint (1998-03-27)[2019-09-17]. https://arxiv.org/abs/cmp-lg/9803003
|
[5] |
Berger A L, Pietra V J D, Pietra S A D. A maximum entropy approach to natural language processing. Computat Linguist, 1996, 22(1): 39
|
[6] |
McCallum A, Li W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons // Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4. Edmonton, 2003: 188
|
[7] |
俞鴻魁, 張華平, 劉群, 等. 基于層疊隱馬爾可夫模型的中文命名實體識別. 通信學報, 2006, 27(2):87 doi: 10.3321/j.issn:1000-436X.2006.02.013
Yu H K, Zhang H P, Liu Q, et al. Chinese named entity recognition based on cascading hidden Markov model. J Commun, 2006, 27(2): 87 doi: 10.3321/j.issn:1000-436X.2006.02.013
|
[8] |
何炎祥, 羅楚威, 胡彬堯. 基于CRF和規則相結合的地理命名實體識別方法. 計算機應用與軟件, 2015, 32(1):179 doi: 10.3969/j.issn.1000-386x.2015.01.046
He Y X, Luo C W, Hu B Y. Geographic entity recognition method based on CRF model and rules combination. Comput Appl Softw, 2015, 32(1): 179 doi: 10.3969/j.issn.1000-386x.2015.01.046
|
[9] |
王路路, 艾山?吾買爾, 買合木提?買買提, 等. 基于CRF和半監督學習的維吾爾文命名實體識別. 中文信息學報, 2018, 32(11):16 doi: 10.3969/j.issn.1003-0077.2018.11.003
Wang L L, Aishan W, Maihemuti M, et al. A semi-supervised approach to Uyghur named entity recognition based on CRF. J Chin Inf Process, 2018, 32(11): 16 doi: 10.3969/j.issn.1003-0077.2018.11.003
|
[10] |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735 doi: 10.1162/neco.1997.9.8.1735
|
[11] |
Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw, 2005, 18(5-6): 602 doi: 10.1016/j.neunet.2005.06.042
|
[12] |
楊紅梅, 李琳, 楊日東, 等. 基于雙向LSTM神經網絡電子病歷命名實體的識別模型. 中國組織工程研究, 2018, 22(20):3237 doi: 10.3969/j.issn.2095-4344.0302
Yang H M, Li L, Yang R D, et al. Named entity recognition based on bidirectional long short-term memory combined with case report form. Chin J Tissue Eng Res, 2018, 22(20): 3237 doi: 10.3969/j.issn.2095-4344.0302
|
[13] |
Lin B Y, Xu F, Luo Z Y, et al. Multi-channel BiLSTM-CRF model for emerging named entity recognition in social media // Proceedings of the 3rd Workshop on Noisy User-generated Text. Copenhagen, 2017: 160
|
[14] |
Bharadwaj A, Mortensen D, Dyer C, et al. Phonologically aware neural model for named entity recognition in low resource transfer settings // Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, 2016: 1462
|
[15] |
Li C Y, Wu Y Z, Hu F H, et al. Packaging domain-based named entity recognition with multi-layer neural networks. Neu-roQuantology, 2018, 16(6): 564
|
[16] |
易士翔, 尹宏鵬, 鄭恒毅. 基于BiLSTM的公共安全事件觸發詞識別. 工程科學學報, 2019, 41(9):1201
Yi S X, Yin H P, Zheng H Y. Public security event trigger identification based on Bidirectional LSTM. Chin J Eng, 2019, 41(9): 1201
|
[17] |
陳秋瑗, 程光, 李迪, 等. 機械設計領域的命名實體識別研究. 計算機工程與應用, 2017, 53(20):100 doi: 10.3778/j.issn.1002-8331.1604-0231
Chen Q Y, Cheng G, Li D, et al. Named entity recognition for mechanical design and manufacturing area. Comput Eng Appl, 2017, 53(20): 100 doi: 10.3778/j.issn.1002-8331.1604-0231
|
[18] |
趙曉寧, 馮志鵬. 基于集合經驗模式分解和交叉能量算子的滾動軸承故障診斷. 工程科學學報, 2015, 37(S1):65
Zhao X N, Feng Z P. Fault diagnosis of rolling element bearing based on ensemble empirical mode decomposition and cross energy operator. Chin J Eng, 2015, 37(S1): 65
|
[19] |
張東, 馮志鵬. 基于變分模式分解和微積分增強能量算子的滾動軸承故障診斷. 工程科學學報, 2016, 38(9):1327
Zhang D, Feng Z P. Fault diagnosis of rolling bearings based on variational mode decomposition and calculus enhanced energy operator. Chin J Eng, 2016, 38(9): 1327
|
[20] |
趙萬華, 張星, 呂盾, 等. 國產數控機床的技術現狀與對策. 航空制造技術, 2016, 59(9):16
Zhao W H, Zhang X, Lv D, et al. Technical status and strategies for domestic CNC machine tools. Aeron Manuf Technol, 2016, 59(9): 16
|
[21] |
Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality // Advances in Neural Information Processing Systems 26(NIPS 2013). Lake Tahoe, 2013: 3111
|
[22] |
Lafferty J, McCallum A, Pereira F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data // Proceedings of the 18th International Conference on Machine Learning 2001. Williamstown, 2001: 282
|
[23] |
袁莎, 唐杰, 顧曉韜. 開放互聯網中的學者畫像技術綜述. 計算機研究與發展, 2018, 55(9):1903 doi: 10.7544/issn1000-1239.2018.20180139
Yuan S, Tang J, Gu X T. A summary of scholars' portrait techniques in the open internet. J Comput Res Dev, 2018, 55(9): 1903 doi: 10.7544/issn1000-1239.2018.20180139
|
[24] |
朱文球, 劉強. 基于條件隨機域的上下文人類動作識別. 計算機工程與應用, 2008, 44(28):180 doi: 10.3778/j.issn.1002-8331.2008.28.060
Zhu W Q, Liu Q. Conditional random fields with loop and its inference algorithm. Comput Eng Appl, 2008, 44(28): 180 doi: 10.3778/j.issn.1002-8331.2008.28.060
|
[25] |
Lai S W. Word and document embeddings based on neural network approaches[J/OL]. arXiv preprint (2016-11-18)[2019-09-17]. https://arxiv.org/abs/1611.05962
|