Citation: | DU Hai-peng, SHAO Li-zhen, ZHANG Dong-hui. ADHD classification based on a multi-objective support vector machine[J]. Chinese Journal of Engineering, 2020, 42(4): 441-447. doi: 10.13374/j.issn2095-9389.2019.09.12.007 |
[1] |
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. BMC Med, 2013, 17: 133
|
[2] |
Saad J F, Kohn M R, Clarke S, et al. Is the theta/beta EEG marker for ADHD inherently flawed? J Attention Disord, 2018, 22(9): 815 doi: 10.1177/1087054715578270
|
[3] |
Chang C W, Ho C C, Chen J H. ADHD classification by a texture analysis of anatomical brain MRI data. Front Syst Neurosci, 2012, 6: 66
|
[4] |
Kuang L D, Lin Q H, Gong X F, et al. Model order effects on ICA of resting-state complex-valued fMRI data: application to schizophrenia. J Neurosci Methods, 2018, 304: 24 doi: 10.1016/j.jneumeth.2018.02.013
|
[5] |
Hojjati S H, Ebrahimzadeh A, Khazaee A, et al. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J Neurosci Methods, 2017, 282: 69 doi: 10.1016/j.jneumeth.2017.03.006
|
[6] |
Castellanos F X, Margulies D S, Kelly C, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiat, 2008, 63(3): 332 doi: 10.1016/j.biopsych.2007.06.025
|
[7] |
Du J Q, Wang L P, Jie B, et al. Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA. Comput Med Imag Graph, 2016, 52: 82 doi: 10.1016/j.compmedimag.2016.04.004
|
[8] |
Qureshi M N I, Jo H J, Lee B. ADHD subgroup discrimination with global connectivity features using hierarchical extreme learning machine: resting-state FMRI study // 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Melbourne, 2017: 529
|
[9] |
Miao B, Zhang Y L. A feature selection method for classification of ADHD // Proceedings of 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS). Dalian, 2017: 21
|
[10] |
Riaz A, Asad M, Alonso E, et al. Fusion of fMRI and non-imaging data for ADHD classification. Comput Med Imag Graph, 2018, 65: 115 doi: 10.1016/j.compmedimag.2017.10.002
|
[11] |
Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res, 2002, 16: 321 doi: 10.1613/jair.953
|
[12] |
Krawczyk B. Learning from imbalanced data: open challenges and future directions. Prog Artif Intell, 2016, 5(4): 221 doi: 10.1007/s13748-016-0094-0
|
[13] |
He H B, Garcia E A. Learning from imbalanced data. IEEE Trans Knowl Data Eng, 2009, 21(9): 1263 doi: 10.1109/TKDE.2008.239
|
[14] |
Shao L Z, Xu Y D, Fu D M. Classification of ADHD with bi-objective optimization. J Biomed Inf, 2018, 84: 164 doi: 10.1016/j.jbi.2018.07.011
|
[15] |
Bellec P, Chu C, Chouinard-Decorte F, et al. The neuro bureau ADHD-200 preprocessed repository. Neuroimage, 2017, 144: 275 doi: 10.1016/j.neuroimage.2016.06.034
|
[16] |
Friston K J. Functional and effective connectivity: a review. Brain Connect, 2011, 1(1): 13 doi: 10.1089/brain.2011.0008
|
[17] |
Reris R, Brooks J P. Principal component analysis and optimization: a tutorial // Proceedings of 14th INFORMS Computing Society Conference, Richmond, Virginia, US, 2015: 212
|
[18] |
Cortes C, Vapnik V. Support-vector networks. Mach Learn, 1995, 20(3): 273
|
[19] |
Aytug H, Say?n S. Exploring the trade-off between generalization and empirical errors in a one-norm SVM. Eur J Oper Res, 2012, 218(3): 667 doi: 10.1016/j.ejor.2011.11.037
|
[20] |
A?kan A, Say?n S. SVM classification for imbalanced data sets using a multiobjective optimization framework. Ann Oper Res, 2014, 216(1): 191 doi: 10.1007/s10479-012-1300-5
|
[21] |
Das I, Dennis J E. Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim, 1998, 8(3): 631 doi: 10.1137/S1052623496307510
|
[22] |
Breiman L. Random forests. Mach Learn, 2001, 45(1): 5 doi: 10.1023/A:1010933404324
|
[23] |
Peng X L, Lin P, Zhang T S, et al. Extreme learning machine-based classification of ADHD using brain structural MRI data. PloS One, 2013, 8(11): e79476 doi: 10.1371/journal.pone.0079476
|