Citation: | LIU Xiao-lu, ZHAO Zi-xi, GUI Zi-yu, GONG Ai-jun. Overview of microbial technology in the utilization of rare earth resources[J]. Chinese Journal of Engineering, 2020, 42(1): 60-69. doi: 10.13374/j.issn2095-9389.2019.09.12.003 |
[1] |
Deady E A, Mouchos E, Goodenough K, et al. A review of the potential for rare-earth element resources from European red muds: examples from Seydisehir, Turkey and Parnassus-Giona, Greece. Mineralogical Mag, 2016, 80(1): 43 doi: 10.1180/minmag.2016.080.052
|
[2] |
Alonso E, Sherman A M, Wallington T J, et al. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol, 2012, 46(6): 3406 doi: 10.1021/es203518d
|
[3] |
Goodenough K M, Wall F, Merriman D. The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat Resour Res, 2018, 27(2): 201 doi: 10.1007/s11053-017-9336-5
|
[4] |
Massari S, Ruberti M. Rare earth elements as critical raw materials: focus on international markets and future strategies. Resour Policy, 2013, 38(1): 36 doi: 10.1016/j.resourpol.2012.07.001
|
[5] |
Haque N, Hughes A, Lim S, et al. Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact. Resources, 2014, 3(4): 614 doi: 10.3390/resources3040614
|
[6] |
李浩然, 馮雅麗, 石紅, 等. 微生物浸出深海多金屬結核中有價金屬. 北京科技大學學報, 2000, 22(6):489 doi: 10.3321/j.issn:1001-053X.2000.06.001
Li H R, Feng Y L, Shi H, et al. Bio-leaehing valuable metals from multimetallic nodules in the deep sea bed. J Univ Sci Technol Beijing, 2000, 22(6): 489 doi: 10.3321/j.issn:1001-053X.2000.06.001
|
[7] |
Zepf V. Rare Earth Elements: A New Approach to the Nexus of Supply, Demand and Use: Exemplified along the Use of Neodymium in Permanent Magnets. Berlin: Springer Science & Business Media, 2013
|
[8] |
Aide M T, Aide C. Rare earth elements: their importance in understanding soil genesis. ISRN Soil Sci, 2012, 2012: 783876
|
[9] |
Chistoserdova L. Lanthanides: New life metals? World J Microbiol Biotechnol, 2016, 32(8): 138 doi: 10.1007/s11274-016-2088-2
|
[10] |
Shiller A M, Chan E W, Joung D J, et al. Light rare earth element depletion during Deepwater Horizon blowout methanotrophy. Sci Rep, 2017, 7: 10389 doi: 10.1038/s41598-017-11060-z
|
[11] |
Watling H. Microbiological advances in biohydrometallurgy. Minerals, 2016, 6(2): 49 doi: 10.3390/min6020049
|
[12] |
Goldstein A H, Krishnaraj P U. Phosphate solubilizing microorganisms vs. phosphate mobilizing microorganisms: what separates a phenotype from a trait? // First International Meeting on Microbial Phosphate Solubilization. Salamanca, 2007: 203
|
[13] |
Omar N B, Merroun M L, Pe?alver J M A, et al. Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere, 1997, 35(10): 2277 doi: 10.1016/S0045-6535(97)00306-8
|
[14] |
Karavaiko G I, Kareva A S, Avakian Z A, et al. Biosorption of scandium and yttrium from solutions. Biotechnol Lett, 1996, 18(11): 1291 doi: 10.1007/BF00129957
|
[15] |
Ilyas S, Kim M S, Lee J C, et al. Bio-reclamation of strategic and energy critical metals from secondary resources. Metals, 2017, 7(6): 207 doi: 10.3390/met7060207
|
[16] |
季根源, 張洪平, 李秋玲, 等. 中國稀土礦產資源現狀及其可持續發展對策. 中國礦業, 2018, 27(8):9
Ji G Y, Zhang H P, Li Q L, et al. Current status of rare earth resources in China and strategies for its sustainable development. China Min Mag, 2018, 27(8): 9
|
[17] |
Abreu R D, Morais C A. Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide. Miner Eng, 2010, 23(6): 536 doi: 10.1016/j.mineng.2010.03.010
|
[18] |
劉琦, 周芳, 馮健, 等. 我國稀土資源現狀及選礦技術進展. 礦產保護與利用, 2019, 39(5):76
Liu Q, Zhou F, Feng J, et al. Review on rare earth resoueces and its mineral processing technology in China. Conservation Utilization Miner Resour, 2019, 39(5): 76
|
[19] |
Ober J A. Mineral commodity summaries 2017[R/OL]. U.S. Geological Survey (2017-1-31)[2019-9-12]. https://pubs.er.usgs.gov/publication/70180197
|
[20] |
袁忠信, 白鴿. 中國內生稀有稀土礦床的時空分布. 礦床地質, 2001, 20(4):347 doi: 10.3969/j.issn.0258-7106.2001.04.008
Yuan Z X, Bai G. Temporal and spatial distribution of endogenic rare and rare earth mineral deposits of China. Miner Deposits, 2001, 20(4): 347 doi: 10.3969/j.issn.0258-7106.2001.04.008
|
[21] |
劉健, 凌明星, 李印, 等. 白云鄂博超大型REE?Nb?Fe礦床的稀土成礦模式綜述. 大地構造與成礦學, 2009, 33(2):270 doi: 10.3969/j.issn.1001-1552.2009.02.011
Liu J, Ling M X, Li Y, et al. REE ore-forming models of giant Bayan Obo REE?Nb?Fe ore deposit: a review. Geoteconica et Metallogenia, 2009, 33(2): 270 doi: 10.3969/j.issn.1001-1552.2009.02.011
|
[22] |
Brandl H, Barmettler F, Castelberg C, et al. Microbial mobilization of rare earth elements (REE) from mineral solids—a mini review. AIMS Microbiol, 2016, 3(2): 190
|
[23] |
Mullen M D, Wolf D C, Ferris F G, et al. Bacterial sorption of heavy metals. Appl Environ Microbiol, 1989, 55(12): 3143
|
[24] |
Ozaki T, Suzuki Y, Nankawa T, et al. Interactions of rare earth elements with bacteria and organic ligands. J Alloys Compd, 2006, 408-412: 1334 doi: 10.1016/j.jallcom.2005.04.142
|
[25] |
Horiike T, Yamashita M. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium. Appl Environ Microbiol, 2015, 81(9): 3062 doi: 10.1128/AEM.00300-15
|
[26] |
Bonificio W D, Clarke D R. Rare-earth separation using bacteria. Environ Sci Technol Lett, 2016, 3(4): 180 doi: 10.1021/acs.estlett.6b00064
|
[27] |
Moriwaki H, Yamamoto H. Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology. Appl Microbiol Biotechnol, 2012, 97(1): 1
|
[28] |
孟春瑜, 荊乾坤, 馬駿, 等. 微生物技術在稀有金屬資源利用中的研究概況. 稀有金屬, 2015, 39(4):371
Meng C Y, Jing Q K, Ma J, et al. Overview of microbiological technology for recovery of rare metal resources. Chin J Rare Met, 2015, 39(4): 371
|
[29] |
Brisson V L, Zhuang W Q, Alvarez-Cohen L. Bioleaching of rare earth elements from monazite sand. Biotechnol Bioeng, 2016, 113(2): 339 doi: 10.1002/bit.25823
|
[30] |
Goyne K W, Brantley S L, Chorover J. Rare earth element release from phosphate minerals in the presence of organic acids. Chem Geol, 2010, 278(1-2): 1 doi: 10.1016/j.chemgeo.2010.03.011
|
[31] |
Sashidhar B, Podile A R. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol, 2010, 109(1): 1
|
[32] |
Reyes I, Bernier L, Simard R R, et al. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol, 1999, 28(3): 281 doi: 10.1111/j.1574-6941.1999.tb00583.x
|
[33] |
Corbett M K, Eksteen J J, Niu X Z, et al. Syntrophic effect of indigenous and inoculated microorganisms in the leaching of rare earth elements from Western Australian monazite. Res Microbiol, 2018, 169(10): 558 doi: 10.1016/j.resmic.2018.05.007
|
[34] |
Sand W, Gehrke T. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res Microbiol, 2006, 157(1): 49 doi: 10.1016/j.resmic.2005.07.012
|
[35] |
Fathollahzadeh H, Becker T, Eksteen J J, et al. Microbial contact enhances bioleaching of rare earth elements. Bioresour Technol Rep, 2018, 3: 102 doi: 10.1016/j.biteb.2018.07.004
|
[36] |
Oliveira R C, Jouannin C, Guibal E, et al. Samarium (III) and praseodymium (III) biosorption on Sargassum sp.: batch study. Process Biochem, 2011, 46(3): 736 doi: 10.1016/j.procbio.2010.11.021
|
[37] |
Das N, Das D. Recovery of rare earth metals through biosorption: an overview. J Rare Earths, 2013, 31(10): 933 doi: 10.1016/S1002-0721(13)60009-5
|
[38] |
劉愛民. 耐鎘細菌篩選與吸附鎘機理研究及其在鎘污染土壤修復中的應用[學位論文]. 南京: 南京農業大學, 2005
Liu A M. Isolation and the Mechanism of Cd2+ Adsorption of A Cadmiu-tolerant Bacterium and Its Application in Restoring Cadmium-contaminated Soils[Dissertation]. Nanjing: Nanjing Agricultural University, 2005
|
[39] |
Goyal N, Jain S C, Banerjee U C. Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res, 2003, 7(2): 311 doi: 10.1016/S1093-0191(02)00004-7
|
[40] |
Philip L, Iyengar L, Venkobachar C. Biosorption of U, La, Pr, Nd, Eu and Dy by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol, 2000, 25(1): 1 doi: 10.1038/sj.jim.7000026
|
[41] |
Gadd G M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 2009, 156(3): 609
|
[42] |
Tsuruta T. Accumulation of rare earth elements in various microorganisms. J Rare Earths, 2007, 25(5): 526 doi: 10.1016/S1002-0721(07)60556-0
|
[43] |
史小利. 黑曲霉對稀土離子的生物吸附研究[學位論文]. 鄭州: 河南農業大學, 2008
Shi X L. Studies on Adsorption of the Rare Earth by Aspergillus Niger[Dissertation]. Zhengzhou: Henan Agricultural University, 2008
|
[44] |
Takahashi Y, Chatellier X, Hattori K H, et al. Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats. Chem Geol, 2005, 219(1-4): 53 doi: 10.1016/j.chemgeo.2005.02.009
|
[45] |
Moriwaki H, Koide R, Yoshikawa R, et al. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis. Appl Microbiol Biotechnol, 2012, 97(8): 3721
|
[46] |
Maleke M, Valverde A, Vermeulen J G, et al. Biomineralization and bioaccumulation of europium by a thermophilic metal resistant bacterium. Front Microbiol, 2019, 10: 81 doi: 10.3389/fmicb.2019.00081
|
[47] |
Hassanoen W A G, Desouky O A N, Hussien S S E. Bioleaching of some rare earth elements from Egyptian monazite using Aspergillus ficuum and Pseudomonas aeruginosa. Walailak J Sci Technol, 2014, 11(9): 809
|
[48] |
Corbett M K, Eksteen J J, Niu X Z, et al. Interactions of phosphate solubilising microorganisms with natural rare-earth phosphate minerals: a study utilizing Western Australian monazite. Bioprocess Biosyst Eng, 2017, 40(6): 929 doi: 10.1007/s00449-017-1757-3
|
[49] |
Desouky O A, El-Mougith A A, Hassanien W A, et al. Extraction of some strategic elements from thorium–uranium concentrate using bioproducts of Aspergillus ficuum and Pseudomonas aeruginosa. Arabian J Chem, 2016, 9(Suppl 1): S795
|
[50] |
Feng M H, Ngwenya B T, Wang L, et al. Bacterial dissolution of fluorapatite as a possible source of elevated dissolved phosphate in the environment. Geochim Cosmochim Acta, 2011, 75(19): 5785 doi: 10.1016/j.gca.2011.07.019
|
[51] |
Kim Y, Bae B, Choung Y K. Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. J Biosci Bioeng, 2005, 99(1): 23 doi: 10.1263/jbb.99.23
|
[52] |
Zhang L M, Dong H L, Liu Y, et al. Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria. Chem Geol, 2018, 483: 544 doi: 10.1016/j.chemgeo.2018.03.023
|
[53] |
梁長利, 段敏靜, 陳陵康, 等. 粘質沙雷氏菌對重釔稀土離子的生物吸附. 中國稀土學報, 2018, 36(3):328
Liang C L, Duan M J, Chen L K, et al. Biosorption of yttrium base heavy rare earth ions by Serratia marcescens. J Chin Soc Rare Earths, 2018, 36(3): 328
|
[54] |
Qu Y, Lian B. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour Technol, 2013, 136: 16 doi: 10.1016/j.biortech.2013.03.070
|
[55] |
Tsuruta T. Selective accumulation of light or heavy rare earth elements using gram-positive bacteria. Colloids Surf B, 2006, 52(2): 117 doi: 10.1016/j.colsurfb.2006.04.014
|
[56] |
Binnemans K, Jones P T, Blanpain B, et al. Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J Cleaner Prod, 2015, 99: 17 doi: 10.1016/j.jclepro.2015.02.089
|
[57] |
Andrès Y, Thouand G, Boualam M, et al. Factors influencing the biosorption of gadolinium by micro-organisms and its mobilisation from sand. Appl Microbiol Biotechnol, 2000, 54(2): 262 doi: 10.1007/s002530000368
|
[58] |
Kazy S K, Das S K, Sar P. Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. J Ind Microbiol Biotechnol, 2006, 33(9): 773 doi: 10.1007/s10295-006-0108-1
|
[59] |
Xu S X, Zhang S M, Chen K, et al. Biosorption of La3+ and Ce3+ by Agrobacterium sp. HN1. J Rare Earths, 2011, 29(3): 265 doi: 10.1016/S1002-0721(10)60443-7
|
[60] |
Palmieri M C, Garcia Jr O, Melnikov P. Neodymium biosorption from acidic solutions in batch system. Process Biochem, 2000, 36(5): 441 doi: 10.1016/S0032-9592(00)00236-3
|
[61] |
Vlachou A, Symeopoulos B D, Koutinas A A. A comparative study of neodymium sorption by yeast cells. Radiochim Acta, 2009, 97(8): 437
|
[62] |
Hosomomi Y, Baba Y, Kubota F, et al. Biosorption of rare earth elements by Escherichia coli. J Chem Eng Jpn, 2013, 46(7): 450 doi: 10.1252/jcej.13we031
|
[63] |
王慧琴. 黃孢原毛平革菌對稀土離子的吸附作用研究[學位論文]. 鄭州: 河南農業大學, 2008
Wang H Q. Studies on Adsorption of the Rare Earth Ions by Phanerochaete Chrysosporium[Dissertation]. Zhengzhou: Henan Agricultural University, 2008
|
[64] |
溫建康, 姚國成, 陳勃偉, 等. 溫度對浸礦微生物活性及銅浸出率的影響. 北京科技大學學報, 2009, 31(3):295 doi: 10.3321/j.issn:1001-053X.2009.03.005
Wen J K, Yao G C, Chen B W, et al. Effect of temperature on the activity of mineral-bioleaching microorganisms and the bioleaching rate of copper. J Univ Sci Technol Beijing, 2009, 31(3): 295 doi: 10.3321/j.issn:1001-053X.2009.03.005
|
[65] |
Fathollahzadeh H, Hackett M J, Khaleque H N, et al. Better together: Potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite. Bioresour Technol Rep, 2018, 3: 109 doi: 10.1016/j.biteb.2018.07.003
|
[66] |
Brandl H, Faramarzi M A. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuology, 2006, 4(2): 93 doi: 10.1016/S1672-2515(07)60244-9
|
[67] |
Liu Y, Hou Z Q. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. J Asian Earth Sci, 2017, 137: 35 doi: 10.1016/j.jseaes.2017.01.010
|
[68] |
Shin D, Kim J, Kim B S, et al. Use of phosphate solubilizing bacteria to leach rare earth elements from monazite-bearing ore. Minerals, 2015, 5(2): 189 doi: 10.3390/min5020189
|
[69] |
Binnemans K, Jones P T, Blanpain B, et al. Recycling of rare earths: a critical review. J Cleaner Prod, 2013, 51: 1 doi: 10.1016/j.jclepro.2012.12.037
|
[70] |
Tkaczyk A H, Bartl A, Amato A, et al. Sustainability evaluation of essential critical raw materials: cobalt, niobium, tungsten and rare earth elements. J Phys D Appl Phys, 2018, 51(20): 203001 doi: 10.1088/1361-6463/aaba99
|
[71] |
Hopfe S, Flemming K, Lehmann F, et al. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha. Waste Manage, 2017, 62: 211 doi: 10.1016/j.wasman.2017.02.005
|
[72] |
Marra A, Cesaro A, Rene E R, et al. Bioleaching of metals from WEEE shredding dust. J Environ Manage, 2018, 210: 180 doi: 10.1016/j.jenvman.2017.12.066
|
[73] |
Reed D W, Fujita Y, Daubaras D L, et al. Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy, 2016, 166: 34 doi: 10.1016/j.hydromet.2016.08.006
|
[74] |
Klauber C, Grafe M, Power G. Bauxite residue issues: II. options for residue utilization. Hydrometallurgy, 2011, 108(1-2): 11 doi: 10.1016/j.hydromet.2011.02.007
|
[75] |
尹升華, 王雷鳴, 吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143
Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143
|
[76] |
Thompson V S, Gupta M, Jin H Y, et al. Techno-economic and life cycle analysis for bioleaching rare-earth elements from waste materials. ACS Sustainable Chem Eng, 2018, 6(2): 1602 doi: 10.1021/acssuschemeng.7b02771
|
[77] |
Rodríguez H, Fraga R, Gonzalez T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil, 2006, 287(1-2): 15 doi: 10.1007/s11104-006-9056-9
|
[78] |
Fathollahzadeh H, Kaczala F, Bhatnagar A, et al. Speciation of metals in contaminated sediments from Oskarshamn Harbor, Oskarshamn, Sweden. Environ Sci Pollut Res, 2013, 21(4): 2455
|
[79] |
Chu K H. Improved fixed bed models for metal biosorption. Chem Eng J, 2004, 97(2-3): 233 doi: 10.1016/S1385-8947(03)00214-6
|