Citation: | ZHOU Lin-na, WANG Yun, ZHANG Xin, YANG Chun-yu. Complete coverage path planning of mobile robot on abandoned mine land[J]. Chinese Journal of Engineering, 2020, 42(9): 1220-1228. doi: 10.13374/j.issn2095-9389.2019.09.09.004 |
[1] |
桑李紅, 付梅臣, 馮洋歡. 煤礦區土地復墾規劃設計研究進展及展望. 煤炭科學技術, 2018, 46(2):243
Sang L H, Fu M C, Feng Y H. Progress and prospect of research on land reclamation planning and design in mining area. <italic>Coal Sci Technol</italic>, 2018, 46(2): 243
|
[2] |
徐博, 徐旻, 陳立平, 等. 智能機械全覆蓋路徑規劃算法綜述. 計算機測量與控制, 2016, 24(10):1
Xu B, Xu M, Chen L P, et al. Review on coverage path planning algorithm for intelligent machinery. <italic>Comput Meas Control</italic>, 2016, 24(10): 1
|
[3] |
Hsu P M, Lin C L, Yang M Y. On the complete coverage path planning for mobile robots. <italic>J Intell Robot Syst</italic>, 2014, 74(3-4): 945 doi: 10.1007/s10846-013-9856-0
|
[4] |
Mac T T, Copot C, Tran D T, et al. Heuristic approaches in robot path planning: a survey. <italic>Rob Autonom Syst</italic>, 2016, 86: 13 doi: 10.1016/j.robot.2016.08.001
|
[5] |
Wang Z L, Li H, Zhang X L. Construction waste recycling robot for nails and screws: computer vision technology and neural network approach. <italic>Autom Construct</italic>, 2019, 97: 220 doi: 10.1016/j.autcon.2018.11.009
|
[6] |
王耀南, 潘琪, 陳彥杰. 改進型生物激勵神經網絡的路徑規劃方法. 控制工程, 2018, 25(4):541
Wang Y N, Pan Q, Chen Y J. Path planning method based on improved biologically inspired neural network. <italic>Control Eng China</italic>, 2018, 25(4): 541
|
[7] |
Zhu D Q, Cao X, Sun B, et al. Biologically inspired self-organizing map applied to task assignment and path planning of an AUV system. <italic>IEEE Trans Cognitive Dev Syst</italic>, 2018, 10(2): 304 doi: 10.1109/TCDS.2017.2727678
|
[8] |
朱大奇, 顏明重. 移動機器人路徑規劃技術綜述. 控制與決策, 2010, 25(7):961
Zhu D Q, Yan M Z. Survey on technology of mobile robot path planning. <italic>Control Des</italic>, 2010, 25(7): 961
|
[9] |
Liu G, Li X, Kang X, et al. Automatic navigation path planning method for land leveling based on GNSS. <italic>Trans Chin Soc Agric Mach</italic>, 2016, 47(增刊1): 21
劉剛, 李笑, 康熙, 等. 基于GNSS的農田平整自動導航路徑規劃方法. 農業機械學報, 2016, 47(增刊1):21)
|
[10] |
Sucan I A, Moll M, Kaveraki L E. The open motion planning library. <italic>IEEE Rob Autom Mag</italic>, 2012, 19(4): 72 doi: 10.1109/MRA.2012.2205651
|
[11] |
Oksanen T, Visala A. Coverage path planning algorithms for agricultural field machines. <italic>J Field Rob</italic>, 2009, 26(8): 651 doi: 10.1002/rob.20300
|
[12] |
Palleja T, Tresanchez M, Teixido M, et al. Modeling floor-cleaning coverage performances of some domestic mobile robots in a reduced scenario. <italic>Rob Autonom Syst</italic>, 2010, 58(1): 37 doi: 10.1016/j.robot.2009.07.030
|
[13] |
Bircher A, Kamel M, Alexis K, et al. Receding horizon path planning for 3D exploration and surface inspection. <italic>Autonom Robots</italic>, 2018, 42(2): 291 doi: 10.1007/s10514-016-9610-0
|
[14] |
Wang H J, Yu Y, Yuan Q B. Application of Dijkstra algorithm in robot path-planning // Second International Conference on Mechanic Automation & Control Engineering. Hohhot, 2011: 1067
|
[15] |
Fu B, Chen L, Zhou Y T, et al. An improved A* algorithm for the industrial robot path planning with high success rate and short length. <italic>Rob Autonomous Syst</italic>, 2018, 106: 26 doi: 10.1016/j.robot.2018.04.007
|
[16] |
Wei K, Ren B Y. A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm. <italic>Sensors</italic>, 2018, 18(2): 571 doi: 10.3390/s18020571
|
[17] |
Rashid R, Perumal N, Elamvazuthi I, et al. Mobile robot path planning using Ant Colony Optimization// 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA). Ipoh, 2016: 1
|
[18] |
張超, 李擎, 陳鵬, 等. 一種基于粒子群參數優化的改進蟻群算法及其應用. 北京科技大學學報, 2013, 35(7):955
Zhang C, Li Q, Chen P, et al. Improved ant colony optimization based on particle swarm optimization and its application. <italic>J Univ Sci Technol Beijing</italic>, 2013, 35(7): 955
|
[19] |
田子建, 高學浩, 張夢霞. 基于改進人工勢場的礦井導航裝置路徑規劃. 煤炭學報, 2016, 41(增刊2): 589
Tian Z J, Gao X H, Zhang M X. Path planning based on the improved artificial potential field of coal mine dynamic target navigation. J China Coal Soc, 2016, 41(Suppl 2): 589
|
[20] |
陳爾奎, 吳梅花, 張英杰. 復雜環境下煤礦救災機器人路徑規劃. 煤炭技術, 2018, 37(10):301
Chen E K, Wu M H, Zhang Y J. Path planning for coal mine rescue robot in complex environment. <italic>Coal Technol</italic>, 2018, 37(10): 301
|
[21] |
孫建, 陳宗海, 王鵬, 等. 基于代價地圖和最小樹的移動機器人多區域覆蓋方法. 機器人, 2015, 37(4):435
Sun J, Chen Z H, Wang P, et al. Multi-region coverage method based on cost map and minimal tree for mobile robot. <italic>Robot</italic>, 2015, 37(4): 435
|
[22] |
Hameed I A, Bochtis D, S?rensen C A. An optimized field coverage planning approach for navigation of agricultural robots in fields involving obstacle areas. <italic>Int J Adv Rob Syst</italic>, 2013, 10(5): 1
|
[23] |
唐青松. 深度優先算法在創建樹形結構中的應用研究. 計算機技術與發展, 2014, 24(9):226
Tang Q S. Application and research on tree structure based on depth-first algorithm. <italic>Comput Technol Dev</italic>, 2014, 24(9): 226
|
[24] |
Luo C M, Yang S X, Li X D, et al. Neural-dynamics-driven complete area coverage navigation through cooperation of multiple mobile robots. <italic>IEEE Trans Ind Electron</italic>, 2017, 64(1): 750 doi: 10.1109/TIE.2016.2609838
|
[25] |
Yang S X, Meng M. An efficient neural network approach to dynamic robot motion planning. <italic>Neural Networks</italic>, 2000, 13(2): 143 doi: 10.1016/S0893-6080(99)00103-3
|