<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
ZHOU Lin-na, WANG Yun, ZHANG Xin, YANG Chun-yu. Complete coverage path planning of mobile robot on abandoned mine land[J]. Chinese Journal of Engineering, 2020, 42(9): 1220-1228. doi: 10.13374/j.issn2095-9389.2019.09.09.004
Citation: ZHOU Lin-na, WANG Yun, ZHANG Xin, YANG Chun-yu. Complete coverage path planning of mobile robot on abandoned mine land[J]. Chinese Journal of Engineering, 2020, 42(9): 1220-1228. doi: 10.13374/j.issn2095-9389.2019.09.09.004

Complete coverage path planning of mobile robot on abandoned mine land

doi: 10.13374/j.issn2095-9389.2019.09.09.004
More Information
  • Land resources are the fundamental and basic requirements for human survival and development as well as for the agricultural production and industrial construction. In recent years, due to the impact of industrial construction and chemical pollution, the cultivable land area is gradually decreasing, and the available agricultural land may be gravely insufficient for food production in the future. In China, the amount of abandoned mine land has increased significantly because of China’s national supply-side structural reform program. The abandoned mine land can be transformed into agricultural land to effectively alleviate food crisis and the contradictory relationship existing between people and land, and improve the ecological environment of mining area. Abandoned mine land refers to the land that has lost its economic value due to a series of production operations and also the land that has not been artificially restored to original conditions after mining. Abandoned mine land is a large, external, and unstructured environment with multiple obstacles and uncertainties and cannot be accessed by humans. Therefore, mobile robots are used to access those areas, and even for mobile robots, planning their coverage path in those areas is difficult. In this paper, the boustrophedon cellular decomposition (BCD) method and biologically inspired neural network (BINN) algorithm were combined to complete the coverage path planning of mobile robots on abandoned mine land. First, for the known environment of the abandoned mine land, the BCD method was used to make regional decomposition of the complex environment. The map with comprehensive complexity was decomposed into several subregions without any obstacles. Second, an undirected graph (i.e., a set of objects called vertices or nodes that are connected together, where all the edges are bidirectional) was constructed according to the adjacency relationship of the subregions, and the depth first search algorithm was used to determine the transfer order between subregions. Finally, the BINN algorithm was used to determine the internal walking mode of and the regional transfer path between the subregions. Simulation results show that the BINN algorithm is of higher efficiency than any other path planning algorithms used to solve the robot path transfer problem. Moreover, the proposed method in this paper could work in complex, unstructured environments to complete the coverage path planning of mobile robots.

     

  • loading
  • [1]
    桑李紅, 付梅臣, 馮洋歡. 煤礦區土地復墾規劃設計研究進展及展望. 煤炭科學技術, 2018, 46(2):243

    Sang L H, Fu M C, Feng Y H. Progress and prospect of research on land reclamation planning and design in mining area. <italic>Coal Sci Technol</italic>, 2018, 46(2): 243
    [2]
    徐博, 徐旻, 陳立平, 等. 智能機械全覆蓋路徑規劃算法綜述. 計算機測量與控制, 2016, 24(10):1

    Xu B, Xu M, Chen L P, et al. Review on coverage path planning algorithm for intelligent machinery. <italic>Comput Meas Control</italic>, 2016, 24(10): 1
    [3]
    Hsu P M, Lin C L, Yang M Y. On the complete coverage path planning for mobile robots. <italic>J Intell Robot Syst</italic>, 2014, 74(3-4): 945 doi: 10.1007/s10846-013-9856-0
    [4]
    Mac T T, Copot C, Tran D T, et al. Heuristic approaches in robot path planning: a survey. <italic>Rob Autonom Syst</italic>, 2016, 86: 13 doi: 10.1016/j.robot.2016.08.001
    [5]
    Wang Z L, Li H, Zhang X L. Construction waste recycling robot for nails and screws: computer vision technology and neural network approach. <italic>Autom Construct</italic>, 2019, 97: 220 doi: 10.1016/j.autcon.2018.11.009
    [6]
    王耀南, 潘琪, 陳彥杰. 改進型生物激勵神經網絡的路徑規劃方法. 控制工程, 2018, 25(4):541

    Wang Y N, Pan Q, Chen Y J. Path planning method based on improved biologically inspired neural network. <italic>Control Eng China</italic>, 2018, 25(4): 541
    [7]
    Zhu D Q, Cao X, Sun B, et al. Biologically inspired self-organizing map applied to task assignment and path planning of an AUV system. <italic>IEEE Trans Cognitive Dev Syst</italic>, 2018, 10(2): 304 doi: 10.1109/TCDS.2017.2727678
    [8]
    朱大奇, 顏明重. 移動機器人路徑規劃技術綜述. 控制與決策, 2010, 25(7):961

    Zhu D Q, Yan M Z. Survey on technology of mobile robot path planning. <italic>Control Des</italic>, 2010, 25(7): 961
    [9]
    Liu G, Li X, Kang X, et al. Automatic navigation path planning method for land leveling based on GNSS. <italic>Trans Chin Soc Agric Mach</italic>, 2016, 47(增刊1): 21

    劉剛, 李笑, 康熙, 等. 基于GNSS的農田平整自動導航路徑規劃方法. 農業機械學報, 2016, 47(增刊1):21)
    [10]
    Sucan I A, Moll M, Kaveraki L E. The open motion planning library. <italic>IEEE Rob Autom Mag</italic>, 2012, 19(4): 72 doi: 10.1109/MRA.2012.2205651
    [11]
    Oksanen T, Visala A. Coverage path planning algorithms for agricultural field machines. <italic>J Field Rob</italic>, 2009, 26(8): 651 doi: 10.1002/rob.20300
    [12]
    Palleja T, Tresanchez M, Teixido M, et al. Modeling floor-cleaning coverage performances of some domestic mobile robots in a reduced scenario. <italic>Rob Autonom Syst</italic>, 2010, 58(1): 37 doi: 10.1016/j.robot.2009.07.030
    [13]
    Bircher A, Kamel M, Alexis K, et al. Receding horizon path planning for 3D exploration and surface inspection. <italic>Autonom Robots</italic>, 2018, 42(2): 291 doi: 10.1007/s10514-016-9610-0
    [14]
    Wang H J, Yu Y, Yuan Q B. Application of Dijkstra algorithm in robot path-planning // Second International Conference on Mechanic Automation & Control Engineering. Hohhot, 2011: 1067
    [15]
    Fu B, Chen L, Zhou Y T, et al. An improved A* algorithm for the industrial robot path planning with high success rate and short length. <italic>Rob Autonomous Syst</italic>, 2018, 106: 26 doi: 10.1016/j.robot.2018.04.007
    [16]
    Wei K, Ren B Y. A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm. <italic>Sensors</italic>, 2018, 18(2): 571 doi: 10.3390/s18020571
    [17]
    Rashid R, Perumal N, Elamvazuthi I, et al. Mobile robot path planning using Ant Colony Optimization// 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA). Ipoh, 2016: 1
    [18]
    張超, 李擎, 陳鵬, 等. 一種基于粒子群參數優化的改進蟻群算法及其應用. 北京科技大學學報, 2013, 35(7):955

    Zhang C, Li Q, Chen P, et al. Improved ant colony optimization based on particle swarm optimization and its application. <italic>J Univ Sci Technol Beijing</italic>, 2013, 35(7): 955
    [19]
    田子建, 高學浩, 張夢霞. 基于改進人工勢場的礦井導航裝置路徑規劃. 煤炭學報, 2016, 41(增刊2): 589

    Tian Z J, Gao X H, Zhang M X. Path planning based on the improved artificial potential field of coal mine dynamic target navigation. J China Coal Soc, 2016, 41(Suppl 2): 589
    [20]
    陳爾奎, 吳梅花, 張英杰. 復雜環境下煤礦救災機器人路徑規劃. 煤炭技術, 2018, 37(10):301

    Chen E K, Wu M H, Zhang Y J. Path planning for coal mine rescue robot in complex environment. <italic>Coal Technol</italic>, 2018, 37(10): 301
    [21]
    孫建, 陳宗海, 王鵬, 等. 基于代價地圖和最小樹的移動機器人多區域覆蓋方法. 機器人, 2015, 37(4):435

    Sun J, Chen Z H, Wang P, et al. Multi-region coverage method based on cost map and minimal tree for mobile robot. <italic>Robot</italic>, 2015, 37(4): 435
    [22]
    Hameed I A, Bochtis D, S?rensen C A. An optimized field coverage planning approach for navigation of agricultural robots in fields involving obstacle areas. <italic>Int J Adv Rob Syst</italic>, 2013, 10(5): 1
    [23]
    唐青松. 深度優先算法在創建樹形結構中的應用研究. 計算機技術與發展, 2014, 24(9):226

    Tang Q S. Application and research on tree structure based on depth-first algorithm. <italic>Comput Technol Dev</italic>, 2014, 24(9): 226
    [24]
    Luo C M, Yang S X, Li X D, et al. Neural-dynamics-driven complete area coverage navigation through cooperation of multiple mobile robots. <italic>IEEE Trans Ind Electron</italic>, 2017, 64(1): 750 doi: 10.1109/TIE.2016.2609838
    [25]
    Yang S X, Meng M. An efficient neural network approach to dynamic robot motion planning. <italic>Neural Networks</italic>, 2000, 13(2): 143 doi: 10.1016/S0893-6080(99)00103-3
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (1980) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频