Citation: | HU Bin, TU Xin, WANG Yu, LUO Hai-wen, MAO Xin-ping. Recent progress and future research prospects on the plastic instability of medium-Mn steels: a review[J]. Chinese Journal of Engineering, 2020, 42(1): 48-59. doi: 10.13374/j.issn2095-9389.2019.09.05.004 |
[1] |
Xu H F, Zhao J, Cao W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn). Mater Sci Eng A, 2012, 532: 435 doi: 10.1016/j.msea.2011.11.009
|
[2] |
Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe?0.2C?5Mn steel processed by ART-annealing. Mater Sci Eng A, 2011, 528(22-23): 6661 doi: 10.1016/j.msea.2011.05.039
|
[3] |
Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scripta Mater, 2010, 63(8): 815 doi: 10.1016/j.scriptamat.2010.06.023
|
[4] |
Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review. J Mater Sci Technol, 2017, 33(12): 1457 doi: 10.1016/j.jmst.2017.06.017
|
[5] |
Lee S, De Cooman B C. Effect of the intercritical annealing temperature on the mechanical properties of 10 pct Mn multi-phase steel. Metall Mater Trans A, 2014, 45(11): 5009 doi: 10.1007/s11661-014-2449-0
|
[6] |
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science, 2017, 357(6355): 1029 doi: 10.1126/science.aan0177
|
[7] |
Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Chatelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater, 2017, 124: 17 doi: 10.1016/j.actamat.2016.10.069
|
[8] |
Cottrell A H, Bilby B A. Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc Sect A, 1949, 62(1): 49 doi: 10.1088/0370-1298/62/1/308
|
[9] |
Van den Beukel A. Theory of the effect of dynamic strain aging on mechanical properties. Phys Status Solidi A, 1975, 30(1): 197 doi: 10.1002/pssa.2210300120
|
[10] |
Wilson D V. Grain-size dependence of discontinuous yielding in strain-aged steels. Acta Metall, 1968, 16(5): 743 doi: 10.1016/0001-6160(68)90146-6
|
[11] |
Varin R A, Mazurek B, Himbeault D. Discontinuous yielding in ultrafine-grained austenitic stainless steels. Mater Sci Eng, 1987, 94: 109 doi: 10.1016/0025-5416(87)90326-0
|
[12] |
Akama D, Nakada N, Tsuchiyama T, et al. Discontinuous yielding induced by the addition of nickel to interstitial-free steel. Scripta Mater, 2014, 82: 13 doi: 10.1016/j.scriptamat.2014.03.012
|
[13] |
Hahn G T. A model for yielding with special reference to the yield-point phenomena of iron and related bcc metals. Acta Metall, 1962, 10(8): 727 doi: 10.1016/0001-6160(62)90041-X
|
[14] |
Johnston W G. Yield points and delay times in single crystals. J Appl Phys, 1962, 33(9): 2716 doi: 10.1063/1.1702538
|
[15] |
Emadoddin E, Akbarzadeh A, Daneshi G H. Correlation between Luder strain and retained austenite in TRIP-assisted cold rolled steel sheets. Mater Sci Eng A, 2007, 447(1-2): 174 doi: 10.1016/j.msea.2006.10.046
|
[16] |
Luo H W, Dong H, Huang M X. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels. Mater Des, 2015, 83: 42 doi: 10.1016/j.matdes.2015.05.085
|
[17] |
Hu B, He B B, Cheng G J, et al. Super-high-strength and formable medium Mn steel manufactured by warm rolling process. Acta Mater, 2019, 174: 131 doi: 10.1016/j.actamat.2019.05.043
|
[18] |
Ryu J H, Kim J I, Kim H S, et al. Austenite stability and heterogeneous deformation in fine-grained transformation-induced plasticity-assisted steel. Scripta Mater, 2013, 68(12): 933 doi: 10.1016/j.scriptamat.2013.02.026
|
[19] |
Ma J W, Lu Q, Sun L, et al. Two-step intercritical annealing to eliminate Lüders band in a strong and ductile medium Mn steel. Metall Mater Trans A, 2018, 49(10): 4404 doi: 10.1007/s11661-018-4791-0
|
[20] |
Sun B H, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions. Mater Sci Eng A, 2018, 729: 496 doi: 10.1016/j.msea.2018.04.115
|
[21] |
Zhang Y, Ding H. Ultrafine also can be ductile: on the essence of Lüders band elongation in ultrafine-grained medium manganese steel. Mater Sci Eng A, 2018, 733: 220 doi: 10.1016/j.msea.2018.07.052
|
[22] |
Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands. Mater Sci Eng A, 2017, 679: 230 doi: 10.1016/j.msea.2016.10.042
|
[23] |
Cai Z H, Jing S Y, Li H Y, et al. The influence of microstructural characteristics on yield point elongation phenomenon in Fe?0.2C?11Mn?2Al steel. Mater Sci Eng A, 2019, 739: 17 doi: 10.1016/j.msea.2018.09.114
|
[24] |
Wang X G, He B B, Liu C H, et al. Extraordinary Lüders?strain?rate in medium Mn steels. Materialia, 2019, 6: 100288 doi: 10.1016/j.mtla.2019.100288
|
[25] |
Sun B H, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite?ferrite interface. Acta Mater, 2019, 178: 10 doi: 10.1016/j.actamat.2019.07.043
|
[26] |
Hu B, Luo H W. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel. Acta Mater, 2019, 176: 250 doi: 10.1016/j.actamat.2019.07.014
|
[27] |
Hu B, Luo H W. Microstructures and mechanical properties of 7Mn steel manufactured by different rolling processes. Metals, 2017, 7(11): 464 doi: 10.3390/met7110464
|
[28] |
Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe?9Mn?0.05C steel. Acta Mater, 2014, 78: 369 doi: 10.1016/j.actamat.2014.07.005
|
[29] |
Dutta A, Ponge D, Sandl?bes S, et al. Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation. Materialia, 2019, 5: 100252 doi: 10.1016/j.mtla.2019.100252
|
[30] |
Steineder K, Krizan D, Schneider R, et al. On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels. Acta Mater, 2017, 139: 39 doi: 10.1016/j.actamat.2017.07.056
|
[31] |
Zhang M H, Li L F, Ding J, et al. Temperature-dependent micromechanical behavior of medium-Mn transformation-induced-plasticity steel studied by in situ synchrotron X-ray diffraction. Acta Mater, 2017, 141: 294 doi: 10.1016/j.actamat.2017.09.030
|
[32] |
Wang X G, Huang M X. Temperature dependence of Lüders strain and its correlation with martensitic transformation in a medium Mn transformation-induced plasticity steel. J Iron Steel Res Int, 2017, 24(11): 1073 doi: 10.1016/S1006-706X(17)30156-5
|
[33] |
Gonzalez B M, Marchi L A, da Fonseca E J, et al. Measurement of dynamic strain aging in pearlitic steels by tensile test. ISIJ Int, 2003, 43(3): 428 doi: 10.2355/isijinternational.43.428
|
[34] |
Halim H, Wilkinson D S, Niewczas M. The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy. Acta Mater, 2007, 55(12): 4151 doi: 10.1016/j.actamat.2007.03.007
|
[35] |
Liang X, McDermid J R, Bouaziz O, et al. Microstructural evolution and strain hardening of Fe?24Mn and Fe?30Mn alloys during tensile deformation. Acta Mater, 2009, 57(13): 3978 doi: 10.1016/j.actamat.2009.05.003
|
[36] |
Liang Z Y, Li Y Z, Huang M X. The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel. Scripta Mater, 2016, 112: 28 doi: 10.1016/j.scriptamat.2015.09.003
|
[37] |
Lee S J, Kim J, Kane S N, et al. On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Mater, 2011, 59(17): 6809 doi: 10.1016/j.actamat.2011.07.040
|
[38] |
Sun B H, Vanderesse N, Fazeli F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel. Scripta Mater, 2017, 133: 9 doi: 10.1016/j.scriptamat.2017.01.022
|
[39] |
Sun B H, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions. Mater Sci Eng A, 2018, 729: 496 doi: 10.1016/j.msea.2018.04.115
|
[40] |
Yang F, Luo H W, Pu E X, et al. On the characteristics of Portevin-Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity. Int J Plast, 2018, 103: 188 doi: 10.1016/j.ijplas.2018.01.010
|
[41] |
Grzegorczyk B, Koz?owska A, Morawiec M, et al. Effect of deformation temperature on the Portevin-Le Chatelier effect in medium-Mn steel. Metals, 2019, 9(1): 2
|
[42] |
Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Chatelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater, 2017, 124: 17 doi: 10.1016/j.actamat.2016.10.069
|
[43] |
Kim D W, Ryu W S, Hong J H, et al. Effect of nitrogen on the dynamic strain ageing behaviour of type 316L stainless steel. J Mater Sci, 1998, 33(3): 675 doi: 10.1023/A:1004381510474
|
[44] |
Bracke L, Penning J, Akdut N. The influence of Cr and N additions on the mechanical properties of FeMnC steels. Metall Mater Trans A, 2007, 38(3): 520 doi: 10.1007/s11661-006-9084-3
|
[45] |
Lee S, Kim J, Lee S J, et al. Effect of nitrogen on the critical strain for dynamic strain aging in high-manganese twinning-induced plasticity steel. Scripta Mater, 2011, 65(6): 528 doi: 10.1016/j.scriptamat.2011.06.017
|
[46] |
Lee S, Kim J, Lee S J, et al. Effect of Cu addition on the mechanical behavior of austenitic twinning-induced plasticity steel. Scripta Mater, 2011, 65(12): 1073 doi: 10.1016/j.scriptamat.2011.09.019
|
[47] |
Choi J H, Jo M C, Lee H, et al. Cu addition effects on TRIP to TWIP transition and tensile property improvement of ultra-high-strength austenitic high-Mn steels. Acta Mater, 2019, 166: 246 doi: 10.1016/j.actamat.2018.12.044
|
[48] |
Shun T, Wan C M, Byrne J G. A study of work hardening in austenitic Fe?Mn?C and Fe?Mn?Al?C alloys. Acta Metall Mater, 1992, 40(12): 3407 doi: 10.1016/0956-7151(92)90054-I
|
[49] |
Shun T S, Wan C M, Byrne J G. Serrated flow in austenitic Fe?Mn?C and Fe?Mn?Al?C alloys. Scripta Metall Mater, 1991, 25(8): 1769 doi: 10.1016/0956-716X(91)90302-H
|
[50] |
He B B, Huang M X. Simultaneous increase of both strength and ductility of medium Mn transformation-induced plasticity steel by vanadium alloying. Metall Mater Trans A, 2018, 49(5): 1433 doi: 10.1007/s11661-018-4517-3
|
[51] |
張偉. 高密度電脈沖下GH4169合金塑性變形為研究[學位論文]. 沈陽: 東北大學, 2010
Zhang W. Deformation Behavior of GH4169 Superalloy under the High Current Density Electropulsing [Dissertation]. Shenyang: Northeastern University, 2010
|
[52] |
Zhao Y G, Ma B D, Guo H C, et al. Electropulsing strengthened 2 GPa boron steel with good ductility. Mater Des, 2013, 43: 195 doi: 10.1016/j.matdes.2012.06.060
|
[53] |
陳明江. 電脈沖處理對富銅納米相強化鋼組織結構及力學性能的影響[學位論文]. 哈爾濱: 哈爾濱工程大學, 2018
Chen M J. Effect of Electropulsing Treatment on the Microstructure and Mechanical Properties of Cu-enriched Nanoscale Precipitate-Strengthened Steel [Dissertation]. Harbin: Harbin University of Technology, 2018
|
[54] |
Zhu R F, Jiang Y B, Guan L, et al. Difference in recrystallization between electropulsing-treated and furnace-treated NiTi alloy. J Alloys Compd, 2016, 658: 548 doi: 10.1016/j.jallcom.2015.10.239
|