Citation: | GONG Le-jun, ZHANG Zhi-fei. Clinical named entity recognition from Chinese electronic medical records using a double-layer annotation model combining a domain dictionary with CRF[J]. Chinese Journal of Engineering, 2020, 42(4): 469-475. doi: 10.13374/j.issn2095-9389.2019.09.04.004 |
[1] |
張立邦. 基于半監督學習的中文電子病歷分詞和名實體挖掘[學位論文]. 哈爾濱: 哈爾濱工業大學, 2014
Zhang L B. Word Segmentation and Named Entity Mining Based on Semi Supervised Learning for Chinese EMR[Dissertation]. Harbin: Harbin Institute of Technology, 2014
|
[2] |
Huang Z H, Xu W, Yu K. Bidirectional LSTM-CRF Models for Sequence Tagging[J/OL]. arXiv preprint. (2015-08-09) [2019-09-04]. https://arxiv.org/abs/1508.01991
|
[3] |
Wang Y Q, Yu Z H, Chen L, et al. Supervised methods for symptom name recognition in free-text clinical records of traditional Chinese medicine: an empirical study. J Biomed Inf, 2014, 47: 91 doi: 10.1016/j.jbi.2013.09.008
|
[4] |
Xu Y, Wang Y N, Liu T R, et al. Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries. J Am Med Inf Assoc, 2014, 21(e1): e84 doi: 10.1136/amiajnl-2013-001806
|
[5] |
Lei J B, Tang B Z, Lu X Q, et al. A comprehensive study of named entity recognition in Chinese clinical text. J Am Med Inf Assoc, 2014, 21(5): 808 doi: 10.1136/amiajnl-2013-002381
|
[6] |
許源, 葛艷秋, 王強, 等. 基于CRF與RUTA規則相結合的卒中入院記錄醫學實體識別及應用. 中山大學學報(醫學版), 2018, 39(3):455
Xu Y, Ge Y Q, Wang Q, et al. Medical name entity recognition and application in Chinese admission record of stroke patients based on CRF and RUTA rule. J Sun Yat-sen Univ Med Sci, 2018, 39(3): 455
|
[7] |
張祥偉, 李智. 基于多特征融合的中文電子病歷命名實體識別. 軟件導刊, 2017, 16(2):128
Zhang X W, Li Z. Chinese electronic medical record named entity recognition based on multi-feature fusion. Softw Guide, 2017, 16(2): 128
|
[8] |
于露, 金龍哲, 王夢飛, 等. 基于深度學習的人體低氧狀態識別. 工程科學學報, 2019, 41(6):817
Yu L, Jin L Z, Wang M F, et al. Recognition of human hypoxic state based on deep learning. Chin J Eng, 2019, 41(6): 817
|
[9] |
夏宇彬, 鄭建立, 趙逸凡, 等. 基于深度學習的電子病歷命名實體識別. 電子科技, 2018, 31(11):31
Xia Y B, Zhen J L, Zhao Y F, et al. Deep learning based named entity recognition of electronic medical record. Electron Sci Technol, 2018, 31(11): 31
|
[10] |
Li F, Zhang M S, Tian B, et al. Recognizing irregular entities in biomedical text via deep neural networks. Pattern Recognit Lett, 2018, 105: 105 doi: 10.1016/j.patrec.2017.06.009
|
[11] |
Liu Z J, Yang M, Wang X L, et al. Entity recognition from clinical texts via recurrent neural networks. BMC Med Inf Decis Making, 2017, 17(Suppl 2): 67
|
[12] |
Chowdhury S, Dong X S, Qian L J, et al. A multitask bi-directional RNN model for named entity recognition on Chinese electronic medical records. BMC Bioinf, 2018, 19(Suppl 17): 499
|
[13] |
申站.基于神經網絡的中文電子病歷命名實體識別[學位論文]. 北京: 北京郵電大學, 2018
Shen Z. Named Entity Recognition for Chinese Electronic Record with Neural Network[Dissertation]. Beijing: Beijing University of Posts and Telecommunications, 2018
|
[14] |
Wei Q K, Chen T, Xu R F, et al. Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks. Database, 2016, 2016: baw140 doi: 10.1093/database/baw140
|
[15] |
Wu Y H, Yang X, Bian J, et al. Combine factual medical knowledge and distributed word representation to improve clinical named entity recognition. AMIA Annu Symp Proc, 2018, 2018: 1110
|
[16] |
Jagannatha A N, Yu H. Bidirectional RNN for medical event detection in electronic health records // Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. California, 2016: 473
|
[17] |
Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records[J/OL]. arXiv preprint. (2018-05-11) [2019-09-04]. https://arxiv.org/abs/1801.07860
|
[18] |
Wang Y, Wang L, Rastegar-Mojarad M, et al. Clinical information extraction applications: a literature review. J Biomed Inf, 2018, 77: 34 doi: 10.1016/j.jbi.2017.11.011
|
[19] |
Luka G, Andrey K, Paul G, et al. Named entity recognition in electronic health records using transfer learning bootstrapped neural networks[J/OL]. arXiv preprint. (2019-07-29) [2019-09-04]. https://arxiv.org/abs/1901.01592
|
[20] |
栗偉, 趙大哲, 李博, 等. CRF與規則相結合的醫學病歷實體識別. 計算機應用研究, 2015, 32(4):1082 doi: 10.3969/j.issn.1001-3695.2015.04.029
Li W, Zhao D Z, Li B, et al. Combining CRF and rule based medical named entity recognition. Appl Res Comput, 2015, 32(4): 1082 doi: 10.3969/j.issn.1001-3695.2015.04.029
|
[21] |
施聰鶯, 徐朝軍, 楊曉江. TFIDF算法研究綜述. 計算機應用, 2009, 29(增刊 1):167
Shi C Y, Xu Z J, Yang X J. Study of TFIDF algorithm. J Comput Appl, 2009, 29(Suppl 1): 167
|
[22] |
李航. 統計學習方法. 北京: 清華大學出版社, 2012
Li H, Statistical learning methods. Beijing: Tsinghua University Press, 2012
|
[23] |
楊錦鋒, 關毅, 何彬, 等. 中文電子病歷命名實體和實體關系語料庫構建. 軟件學報, 2016, 27(11):2725
Yang J F, Guan Y, He B, et al. Corpus construction for named entities and entity relations on Chinese electronic medical records. J Softw, 2016, 27(11): 2725
|
[24] |
Uzuner O, South B R, Shen S Y, et al. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inf Assoc, 2011, 18(5): 552 doi: 10.1136/amiajnl-2011-000203
|
[25] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J/OL]. arXiv preprint. (2017-12-06) [2019-09-04]. https://arxiv.org/abs/1706.03762
|
[26] |
Luo L, Yang Z, Yang P, et al. An attention-based BiLSTM-CRF approach to document level chemical named entity recognition. Bioinformatics, 2018, 34(8): 1381 doi: 10.1093/bioinformatics/btx761
|
[27] |
Zhang Y, Wang X W, Hou Z, et al. Clinical named entity recognition from Chinese electronic health records via machine learning methods. JMIR Med Inf, 2018, 6(4): e50 doi: 10.2196/medinform.9965
|