<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
ZHAO Li, ZHANG Wei-cun, CHU Tian-guang. Stability, convergence, and robustness of deterministic multivariable self-tuning control[J]. Chinese Journal of Engineering, 2019, 41(9): 1215-1221. doi: 10.13374/j.issn2095-9389.2019.09.014
Citation: ZHAO Li, ZHANG Wei-cun, CHU Tian-guang. Stability, convergence, and robustness of deterministic multivariable self-tuning control[J]. Chinese Journal of Engineering, 2019, 41(9): 1215-1221. doi: 10.13374/j.issn2095-9389.2019.09.014

Stability, convergence, and robustness of deterministic multivariable self-tuning control

doi: 10.13374/j.issn2095-9389.2019.09.014
More Information
  • Corresponding author: ZHANG Wei-cun, E-mail: weicunzhang@263.net
  • Received Date: 2019-01-03
  • Publish Date: 2019-09-01
  • Self-tuning control is an important approach to intelligent control system design because this kind of control system uses online parameter estimation (or learning) to derive the model of the plant, and as a result of model parameter estimation (or learning), the controller parameters can be adjusted online. However, we still lack a unified analysis tool (which is independent of specific controller design strategy and parameter estimation algorithm) that can be used by engineers to easily understand and judge the stability, convergence, and robustness of this kind of self-tuning control system. This study is focused on a unified analysis of deterministic multivariable self-tuning control systems with the help of the virtual equivalent system (VES) approach based on the transfer function concept. For different parameter estimation situations (three cases are considered, i.e., parameter estimation converges to its true value, parameter estimation converges to other values, and parameter estimation does not converge), four theorems and two corollaries on the stability, convergence, and robustness of deterministic multivariable self-tuning control systems are given with some remarks. These results are independent of specific controller design strategy and parameter estimation algorithm. From the results obtained in this study, it is concluded that the convergence of parameter estimates is unnecessary for the stability and convergence of a self-tuning control system. The feedback information of the self-tuning control system itself is sufficient to achieve the control objective, i.e., the external excitation signal is unnecessary for the deterministic multivariable self-tuning control system. Moreover, on the basis of the results of the stability, convergence, and robustness of deterministic multivariable self-tuning control systems, we have obtained a profound understanding of the self-tuning control system design method. This understanding will provide more flexibility for engineers in real applications of this kind of controller design strategy.

     

  • loading
  • [1]
    張維存. 魯棒自適應控制理論及應用研究[學位論文]. 北京: 清華大學, 1993

    Zhang W C. Research on Robust Adaptive Control Theory and Its Applications [Dissertation]. Beijing: Tsinghua University, 1993
    [2]
    Fekri S, Athans M, Pascoal A. Issues, progress and new results in robust adaptive control. Int J Adapt Control Signal Process, 2006, 20(10): 519 doi: 10.1002/acs.912
    [3]
    李清泉. 自適應控制系統理論、設計與應用. 北京: 科學出版社, 1990

    Li Q Q. Adaptive Control System: Theory, Design, and Applications. Beijing: Science Press, 1990
    [4]
    謝新民, 丁鋒. 自適應控制系統. 北京: 清華大學出版社, 2002

    Xie X M, Ding F. Adaptive Control System. Beijing: Tsinghua University Press, 2002
    [5]
    Zhang W C. On the stability and convergence of self-tuning control-virtual equivalent system approach. Int J Control, 2010, 83(5): 879 doi: 10.1080/00207170903487421
    [6]
    Goodwin G C, Sin K S. Adaptive Filtering Prediction and Control. Courier Corporation, 2014 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1164531
    [7]
    Lozano-Leal R, Goodwin G. A globally convergent adaptive pole placement algorithm without a persistency of excitation requirement. IEEE Trans Autom Control, 1985, 30(8): 795 doi: 10.1109/TAC.1985.1104036
    [8]
    Lozano-Leal R. Robust adaptive regulation without persistent excitation. IEEE Trans Autom Control, 1989, 34(12): 1260 doi: 10.1109/9.40771
    [9]
    Lozano R. Singularity-free adaptive pole-placement without resorting to persistency of excitation: detailed analysis for first order systems. Automatica, 1992, 28(1): 27 doi: 10.1016/0005-1098(92)90004-Y
    [10]
    Lozano R, Dion J M, Dugard L. Singularity-free adaptive pole placement using periodic controllers. IEEE Trans Autom Control, 1993, 38(1): 104 doi: 10.1109/9.186317
    [11]
    Lozano R, Zhao X H. Adaptive pole placement without excitation probing signals. IEEE Trans Autom Control, 1994, 39(1): 47 doi: 10.1109/9.273338
    [12]
    徐利治, 王興華. 數學分析的方法及例題選講(修訂版). 北京: 高等教育出版社, 1983

    Xu L Z, Wang X H. Methods and Examples of Mathematical Analysis (Revised Edition). Beijing: Higher Education Press, 1983
    [13]
    Caines P, Lafortune S. Adaptive control with recursive identification for stochastic linear systems. IEEE Trans Autom Control, 1984, 29(4): 312 doi: 10.1109/TAC.1984.1103520
    [14]
    Chen H F, Guo L. Asymptotically optimal adaptive control with consistent parameter estimates. SIAM J Control Optim, 1987, 25(3): 558 doi: 10.1137/0325031
    [15]
    ?str?m K J, Wittenmark B. Adaptive Control. Newyork: Courier Corporation, 2013
    [16]
    胡適耕. 泛函分析. 北京: 高等教育出版社, 2007

    Hu S G. Functional Analysis. Beijing: Higher Education Press, 2007
    [17]
    Prandini M, Campi M C. A new recursive identification algorithm for singularity free adaptive control. Syst Control Lett, 1998, 34(4): 177 doi: 10.1016/S0167-6911(98)00012-7
    [18]
    Prandini M, Bittanti S, Campi M C. A penalized identification criterion for securing controllability in adaptive control. J Math Syst Estim Control, 1998, 8(4): 1 http://www.ams.org/mathscinet-getitem?mr=1651285
    [19]
    Liberzon D, Morse A S. Basic problems in stability and design of switched systems. IEEE Control Syst Mag, 1999, 19(5): 59 doi: 10.1109/37.793443
    [20]
    Shorten R, Wirth F, Mason O, et al. Stability criteria for switched and hybrid systems. SIAM Rev, 2007, 49(4): 545 doi: 10.1137/05063516X
    [21]
    馮純伯, 史維. 自適應控制, 北京: 電子工業出版社, 1986

    Feng C B, Shi W. Adaptive control. Beijing: Publishing House of Electronics Industry, 1986
    [22]
    張維存, 魏偉. 自適應控制的虛擬等價系統理論及仿真驗證. 中國科學: 信息科學, 2018, 48(7): 947 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201807014.htm

    Zhang W C, Wei W. Virtual equivalent system theory for adaptive control and simulation verification. Sci Sin Inform, 2018, 48(7): 947 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201807014.htm
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)

    Article views (1048) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频