Citation: | WANG Chao, DUAN Li-hui, ZHANG Lai-qi. Long-term oxidation behavior of in situ synthesized SiC particulate-reinforced MoSi2 matrix composites at 900℃[J]. Chinese Journal of Engineering, 2019, 41(9): 1168-1175. doi: 10.13374/j.issn2095-9389.2019.09.008 |
[1] |
Fitzer E, Benesovsky F. Molybdenum disilicide as high-temperature material//Proceedings of 2nd Plansee Seminar. Vienna, 1955: 79
|
[2] |
Chou T C, Nieh T G. New observations of MoSi2 pest at 500℃. Scripta Metall Mater, 1992, 26(10): 1637 doi: 10.1016/0956-716X(92)90270-O
|
[3] |
McKamey C G, Tortorelli P F, DeVan J H, et al. A study of pest oxidation in polycrystalline MoSi2. J Mater Res, 1992, 7(10): 2747 doi: 10.1557/JMR.1992.2747
|
[4] |
Westbrook J H, Wood D L. "PEST" degradation in beryllides, silicides, aluminides and related compounds. J Nucl Mater, 1964, 12(2): 208 doi: 10.1016/0022-3115(64)90142-4
|
[5] |
Chen J X, Li C H, Fu Z, et al. Low temperature oxidation behavior of a MoSi2-based material. Mater Sci Eng A, 1999, 261(1-2): 239 doi: 10.1016/S0921-5093(98)01071-5
|
[6] |
Kuchino J, Kurokawa K, Shibayama T, et al. Effect of microstructure on oxidation resistance of MoSi2 fabricated by spark plasma sintering. Vacuum, 2004, 73(3-4): 623 doi: 10.1016/j.vacuum.2003.12.081
|
[7] |
Arreguín-Zavala J, Turenne S, Martel A, et al. Microwave sintering of MoSi2-Mo5Si3 to promote a final nanometer-scale microstructure and suppressing of pesting phenomenon. Mater Charact, 2012, 68: 117 doi: 10.1016/j.matchar.2012.03.014
|
[8] |
Dasgupta T, Umarji A M. Improved ductility and oxidation resistance in Nb and Al co-substituted MoSi2. Intermetallics, 2008, 16(6): 739 doi: 10.1016/j.intermet.2008.01.006
|
[9] |
Potanin A Y, Pogozhev Y S, Levashov E A, et al. Kinetics and oxidation mechanism of MoSi2-MoB ceramics in the 600-1200℃ temperature range. Ceram Int, 2017, 43(13): 10478 doi: 10.1016/j.ceramint.2017.05.093
|
[10] |
周宏明, 柳公器, 肖來榮, 等. Si3N4顆粒及SiC晶須強韌化MoSi2復合材料的低溫氧化行為. 無機材料學報, 2009, 24(5): 929 https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL200905012.htm
Zhou H M, Liu G Q, Xiao L R, et al. Low temperature oxidation behavior of MoSi2 composites strengthened and toughened by Si3N4 particles and SiC whiskers. J Inorg Mater, 2009, 24(5): 929 https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL200905012.htm
|
[11] |
Feng P Z, Wang X H, He Y Q, et al. Effect of high-temperature preoxidation treatment on the low-temperature oxidation behavior of a MoSi2-based composite at 500℃. J Alloys Compd, 2009, 473(1-2): 185 doi: 10.1016/j.jallcom.2008.06.032
|
[12] |
Taleghani P R, Bakhshi S R, Erfanmanesh M, et al. Improvement of MoSi2 oxidation resistance via boron addition: fabrication of MoB/MoSi2 composite by mechanical alloying and subsequent reactive sintering. Powder Technol, 2014, 254: 241 doi: 10.1016/j.powtec.2014.01.034
|
[13] |
Wen S H, Zhou C G, Sha J B. Improvement of oxidation resistance of a Mo-62Si-5B (at. %) alloy at 1250℃ and 1350℃ via an in situ pre-formed SiO2 fabricated by spark plasma sintering. Corros Sci, 2017, 127: 175 doi: 10.1016/j.corsci.2017.08.019
|
[14] |
孫祖慶, 張來啟, 楊王玥, 等. 一種制備碳化硅顆粒增強二硅化鉬基復合材料的原位復合方法: 中國專利CN01141978.4. 2002-04-17
Sun Z Q, Zhang L Q, Yang W Y, et al. A Method of the Preparation of In Situ Silicon Carbide Particulates Reinforced Molybdenum Disilicide Matrix Composites: China Patent CN01141978.4. 2002-04-17
|
[15] |
張來啟, 孫祖慶, 張躍, 等. 原位SiC顆粒增強MoSi2基復合材料的顯微組織和力學性能. 金屬學報, 2001, 37(3): 325 doi: 10.3321/j.issn:0412-1961.2001.03.022
Zhang L Q, Sun Z Q, Zhang Y, et al. Microstructure and mechanical properties of in situ SiC particulates reinforced MoSi2 matrix composite. Acta Metall Sin, 2001, 37(3): 325 doi: 10.3321/j.issn:0412-1961.2001.03.022
|
[16] |
傅曉偉, 楊王玥, 張來啟, 等. 原位合成MoSi2-30%SiC復合材料高溫蠕變行為. 金屬學報, 2002, 38(7): 731 doi: 10.3321/j.issn:0412-1961.2002.07.013
Fu X W, Yang W Y, Zhang L Q, et al. High temperature creep behavior of in situ synthesized MoSi2-30%SiC composite. Acta Metall Sin, 2002, 38(7): 731 doi: 10.3321/j.issn:0412-1961.2002.07.013
|
[17] |
張來啟, 潘昆明, 段立輝, 等. 原位合成MoSi2-SiC復合材料在500℃的氧化行為. 金屬學報, 2013, 49(11): 1303 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201311005.htm
Zhang L Q, Pan K M, Duan L H, et al. Oxidation behavior of in-situ synthesized MoSi2-SiC composites at 500℃. Acta Metall Sin, 2013, 49(11): 1303 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201311005.htm
|
[18] |
張來啟, 段立輝, 林均品. 原位合成MoSi2-SiC復合材料700℃的氧化行為. 材料研究學報, 2015, 29(8): 561 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201508001.htm
Zhang L Q, Duan L H, Lin J P. Oxidation behavior of in-situ synthesized MoSi2-SiC composites at 700℃. Chin J Mater Res, 2015, 29(8): 561 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201508001.htm
|
[19] |
Wirkus C D, Wilder D R. High-temperature oxidation of molybdenum disilicide. J Am Ceram Soc, 1966, 49(4): 173 doi: 10.1111/j.1151-2916.1966.tb13227.x
|
[20] |
Chou T C, Nieh T G. Comparative studies on the pest reactions of single-and poly-crystalline MoSi2. Scripta Metall Mater, 1992, 27(1): 19 doi: 10.1016/0956-716X(92)90312-3
|
[21] |
Meschter P J. Low-temperature oxidation of molybdenum disilicide. Metall Trans A, 1992, 23(6): 1763 doi: 10.1007/BF02804369
|
[22] |
Bartlett R W, McCamont J W, Gage P R. Structure and chemistry of oxide films thermally grown on molybdenum silicides. J Am Ceram Soc, 1965, 48(11): 551 doi: 10.1111/j.1151-2916.1965.tb14671.x
|