<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
SHUI Li, ZHANG Kai, YU Hong. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al-15Si-4Cu-Mg matrix composites[J]. Chinese Journal of Engineering, 2019, 41(9): 1162-1167. doi: 10.13374/j.issn2095-9389.2019.09.007
Citation: SHUI Li, ZHANG Kai, YU Hong. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al-15Si-4Cu-Mg matrix composites[J]. Chinese Journal of Engineering, 2019, 41(9): 1162-1167. doi: 10.13374/j.issn2095-9389.2019.09.007

Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al-15Si-4Cu-Mg matrix composites

doi: 10.13374/j.issn2095-9389.2019.09.007
More Information
  • Corresponding author: SHUI Li, E-mail: shuilisy@163.com
  • Received Date: 2018-08-10
  • Publish Date: 2019-09-01
  • A graphene-nanoflakes (GNFs)-reinforced GNFs/Al-15Si-4Cu-Mg composite was prepared through low-temperature ball-grinder milling and vacuum hot-press sintering. The influences of the GNFs mass content on the microstructural and mechanical properties of the GNFs/Al-15Si-4Cu-Mg composite were investigated via scanning electron microscope, X-ray diffraction, energy disperse spectroscopy, and transmission electron microscope. Meanwhile, tensile strength and micro-hardness tests were conducted. The corresponding result show that for the specimens with 0.4% and 0.8% (mass fraction) GNFs in mass fraction, the nanoflakes are concentrated on the border of the aluminum alloy grain and played a major role in restraining the matrix grain expansion and avoiding crystal particle coarsening. Moreover, the interface bonding between the GNFs and Al-15Si-4Cu-Mg matrix is strong. There are primary β-Si particles, Mg2Si, and Al2Cu-phase precipitated dispersedly throughout the aluminum matrix. The strong interface bonding between the GNFs and Al-15Si-4Cu-Mg matrix leads to the effective impeding of the dislocation slippage and the improvement in the properties of the GNFs/Al-15Si-4Cu-Mg composites. With the addition of the 1.0% GNFs, it is difficult for the GNFs to disperse but easy for them to cluster together to form black impurities on the grain border, inducing brittle Al4Cu2Mg8Si7 phase precipitation along the aluminum alloy grain boundary. As the content of GNFs increases, the composite tensile strength first increases and then decreases. With an addition of 0.8% GNFs, the composite exhibited higher strength and micro- hardness (321 MPa of tensile strength and HV 98 of micro hardness), with the strength and micro-hardness increasing by 19.3%和46.2%, respectively, compared with the pure Al-15Si-4Cu-Mg composite without added GNFs. With the addition of 0.4% GNFs, the yield strength reaches 221 MPa; however, the micro-hardness and ductility (elongation rate) are enhanced. The combined properties of the GNFs/Al-15Si-4Cu-Mg composite obtained are clearly improved.

     

  • loading
  • [1]
    李炯利, 王旭東, 武岳, 等. 石墨烯含量對鋁基復合材料微觀組織和力學性能的影響. 稀有金屬, 2018, 42(3): 252 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201803005.htm

    Li J L, Wang X D, Wu Y, et al. Microstructure and mechanical properties of aluminum-matrix composite with different graphene contents. Chin J Rare Met, 2018, 42(3): 252 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201803005.htm
    [2]
    Matsuda K, Ikeno S, Uetani Y, et al. Metastable phases in an Al-Mg-Si alloy containing copper. Metall Mater Trans A, 2001, 32(6): 1293 doi: 10.1007/s11661-001-0219-2
    [3]
    Selvakumar S, Dinaharan I, Palanivel R, et al. Development of stainless steel particulate reinforced AA6082 aluminum matrix composites with enhanced ductility using friction stir processing. Mater Sci Eng A, 2017, 685: 317 doi: 10.1016/j.msea.2017.01.022
    [4]
    Yan S J, Dai S L, Zhang X Y, et al. Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng A, 2014, 612: 440 doi: 10.1016/j.msea.2014.06.077
    [5]
    管仁國, 連超, 趙占勇, 等. 石墨烯鋁基復合材料的制備及其性能. 稀有金屬材料與工程, 2012, 42(增刊2): 607 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2012S2147.htm

    Guan R G, Lian C, Zhao Z Y, et al. Study on preparation of graphene and Al-graphene composite. Rare Met Mater Eng, 2012, 42(Suppl 2): 607 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2012S2147.htm
    [6]
    Wang J Y, Li Z Q, Fan G L, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater, 2012, 66(8): 594 doi: 10.1016/j.scriptamat.2012.01.012
    [7]
    Xu Z S, Shi X L, Zhai W Z, et al. Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene. Carbon, 2014, 67: 168 doi: 10.1016/j.carbon.2013.09.077
    [8]
    Kumar K K A, Pillai U T S, Pai B C, et al. Dry sliding wear behavior of Mg-Si alloys. Wear, 2013, 303(1-2): 56 doi: 10.1016/j.wear.2013.02.020
    [9]
    Yolshina L A, Muradymow R V, Korsun I V, et al. Novel aluminum-graphene and aluminum-graphite metallic composite materials: synthesis and properties. J Alloys Compd, 2016, 663: 449 doi: 10.1016/j.jallcom.2015.12.084
    [10]
    Bastwros M, Kim G Y, Zhu C, et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites Part B, 2014, 60: 111 doi: 10.1016/j.compositesb.2013.12.043
    [11]
    Boostani A F, Tahamtan S, Jiang Z Y, et al. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Composites Part A, 2015, 68: 155 doi: 10.1016/j.compositesa.2014.10.010
    [12]
    Shin S E, Bae D H. Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Composites Part A, 2015, 78: 42 http://smartsearch.nstl.gov.cn/paper_detail.html?id=08b4f53c0500eeee9b21fb11b6b103b9
    [13]
    齊天嬌, 俞澤民, 許志鵬, 等. 石墨烯增強鋁基復合材料制備及力學性能研究. 哈爾濱理工大學學報, 2015, 20(3): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-HLGX201503012.htm

    Qi T J, Yu Z M, Xu Z P, et al. Preparation and mechanical properties of graphene reinforced aluminum composites. J Harbin Univ Sci Technol, 2015, 20(3): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-HLGX201503012.htm
    [14]
    徐運超. 石墨烯/Al-Si復合材料摩擦磨損及切削特性的研究[學位論文]. 沈陽: 沈陽理工大學, 2018

    Xu Y C. Research on Friction and Wear and Cutting Performance of Graphene/Al-Si Composites [Dissertation]. Shenyang: Shenyang Ligong University, 2018
    [15]
    Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R, 2013, 74(10): 281 doi: 10.1016/j.mser.2013.08.001
    [16]
    戎旭東, 黃陸軍, 王博, 等. 熱處理對網狀結構TiBw/Ti60復合材料組織與性能的影響. 復合材料學報, 2015, 32(6): 1729 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201506024.htm

    Rong X D, Huang L J, Wang B, et al. Effects of heat treatment on microstructure and properties of TiBw/Ti60 composites with network microstructure. Acta Mater Compos Sin, 2015, 32(6): 1729 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201506024.htm
    [17]
    楊強, 解維華, 孟松鶴, 等. 復合材料多尺度分析方法與典型元件拉伸損傷模擬. 復合材料學報, 2015, 32(3): 617 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201503001.htm

    Yang Q, Xei W H, Meng S H, et al. Multi-scale analysis method of composites and damage simulation of typical component under tensile load. Acta Mater Compos Sin, 2015, 32(3): 617 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201503001.htm
    [18]
    姜黎黎, 徐美玲, 李振國, 等. 三維編織復合材料熱物理性能實驗. 復合材料學報, 2017, 34(12): 2734 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201712013.htm

    Jiang L L, Xu M L, Li Z G, et al. Experimental investigation on thermo-physical properties of 3D braided composites. Acta Mater Compos Sin, 2017, 34(12): 2734 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201712013.htm
    [19]
    李炯利, 厲沙沙, 樊振中, 等. 低溫球磨制備超高強度塊體納米晶純鋁. 中國有色金屬學報, 2013, 23(5): 1182 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305001.htm

    Li J L, Li S S, Fan Z Z, et al. Preparation of super high strength bulk nanocrystalline Al by cryomilling. Chin J Nonferrous Met, 2013, 23(5): 1182 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305001.htm
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)

    Article views (981) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频