Citation: | GUO Zhi-chao, LIU Xuan, XUE Ji-lai, ZHANG Peng-ju. Effects of ultrasound on the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis[J]. Chinese Journal of Engineering, 2019, 41(9): 1135-1141. doi: 10.13374/j.issn2095-9389.2019.09.004 |
[1] |
王恩睿, 惠希東, 王建國, 等. 鑄造共晶鋁硅合金中析出相對斷裂行為的影響. 北京科技大學學報, 2011, 33(12): 1508 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201112012.htm
Wang E R, Hui X D, Wang J G, et al. Effects of precipitates on the fracture behavior of cast eutectic Al-Si alloys. J Univ Sci Technol Beijing, 2011, 33(12): 1508 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201112012.htm
|
[2] |
于小健. 稀土Y對A356合金微觀組織和性能的影響[學位論文]. 常州: 江蘇理工學院, 2015
Yu X J. Effect of Rare Earth Y on Microstructure and Properties of A356 Aluminum Alloy [Dissertation]. Changzhou: Jiangsu University of Technology, 2015
|
[3] |
梁紅玉, 張勇, 毛協民. Al-Si合金快速等軸凝固界面響應函數及組織選擇. 北京科技大學學報, 2009, 31(7): 871 doi: 10.3321/j.issn:1001-053X.2009.07.012
Liang H Y, Zhang Y, Mao X M. Interface response function and microstructure selection for Al-Si alloys during rapid equiaxed solidification. J Univ Sci Technol Beijing, 2009, 31(7): 871 doi: 10.3321/j.issn:1001-053X.2009.07.012
|
[4] |
章愛生, 龔遠興. Y和Sc對A356合金組織與性能的影響. 特種鑄造及有色合金, 2014, 34(10): 1032 https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201410009.htm
Zhang A S, Gong Y X. Effects of Y and Sc on microstructure and properties of A356 alloy. Spec Cast Nonferrous Alloys, 2014, 34(10): 1032 https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201410009.htm
|
[5] |
Chanyathunyaroj K, Patakham U, Kou S, et al. Microstructural evolution of iron-rich intermetallic compounds in scandium modified Al-7Si-0.3Mg alloys. J Alloys Compd, 2017, 692: 865 doi: 10.1016/j.jallcom.2016.09.132
|
[6] |
Muhammad A, Xu C, W X J, et al. High strength aluminum cast alloy: A Sc modification of a standard Al-Si-Mg cast alloy. Mater Sci Eng A, 2014, 604: 122 doi: 10.1016/j.msea.2014.03.005
|
[7] |
Prukkanon W, Srisukhumbowornchai N, Limmaneevichitr C. Modification of hypoeutectic Al-Si alloys with scandium. J Alloys Compd, 2009, 477(1-2): 454 doi: 10.1016/j.jallcom.2008.10.016
|
[8] |
Patakham U, Kajornchaiyakul J, Limmaneevichitr C. Modification mechanism of eutectic silicon in Al-6Si-0.3Mg alloy with scandium. J Alloys Compd, 2013, 575: 273 doi: 10.1016/j.jallcom.2013.05.139
|
[9] |
Riva S, Yusenko K V, Lavery N P, et al. The scandium effect in multicomponent alloys. Int Mater Rev, 2016, 61(3): 203 doi: 10.1080/09506608.2015.1137692
|
[10] |
Qian Y, Xue J L, Wang Z J, et al. Mechanical properties evaluation of Zr addition in L12-Al3 (Sc1-xZrx) using first-principles calculation. JOM, 2016, 68(5): 1293 doi: 10.1007/s11837-016-1880-7
|
[11] |
Belov N A, Naumova E A, Alabin A N, et al. Effect of scandium on structure and hardening of Al-Ca eutectic alloys. J Alloys Compd, 2015, 646: 741 doi: 10.1016/j.jallcom.2015.05.155
|
[12] |
Patakham U, Kajornchaiyakul J, Limmaneevichitr C. Grain refinement mechanism in an Al-Si-Mg alloy with scandium. J Alloys Compd, 2012, 542: 177 doi: 10.1016/j.jallcom.2012.07.018
|
[13] |
Liu X, Guo Z C, Xue J L, et al. Effects of synergetic ultrasound on the Sc yield and primary Al3Sc in the Al-Sc alloy prepared by the molten salts electrolysis. Ultrason Sonochem, 2019, 52: 33 doi: 10.1016/j.ultsonch.2018.09.009
|
[14] |
李亮星, 王濤勝, 黃茜琳, 等. 熔鹽電解法制備鋁鈧中間合金研究進展. 材料導報, 2018, 32(21): 3768 doi: 10.11896/j.issn.1005-023X.2018.21.013
Li L X, Wang T S, Huang X L, et al. Research progress on the preparation of Al-Sc master alloy by molten salt electrolysis method. Mater Rev, 2018, 32(21): 3768 doi: 10.11896/j.issn.1005-023X.2018.21.013
|
[15] |
田忠良, 楊樹, 賴延清, 等. 熔鹽電解法制備鋁-鈧中間合金的研究進展. 礦產保護與利用, 2013(5): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201305014.htm
Tian Z L, Yang S, Lai Y Q, et al. Progress on preparing Al-Sc master alloy by molten salt electrolysis. Conserv Utiliz Miner Resour, 2013(5): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201305014.htm
|
[16] |
李廣宇, 楊少華, 李繼東, 等. 熔鹽電解法制備鋁鈧合金的研究. 輕金屬, 2007(5): 54 doi: 10.3969/j.issn.1002-1752.2007.05.015
Li G Y, Yang S H, Li J D, et al. Preparation of Al-Sc alloys by molten salt electrolysis. Light Metals, 2007(5): 54 doi: 10.3969/j.issn.1002-1752.2007.05.015
|
[17] |
Harata M, Yasuda K, Yakushiji H, et al. Electrochemical production of Al-Sc alloy in CaCl2-Sc2O3 molten salt. J Alloys Compd, 2009, 474(1-2): 124 doi: 10.1016/j.jallcom.2008.06.110
|
[18] |
Royset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev, 2005, 50(1): 19 doi: 10.1179/174328005X14311
|
[19] |
韓昭勇. 熔鹽電解法制備鋁鈧合金及其微觀結構分析[學位論文]. 鄭州: 鄭州大學, 2011
Han Z Y. Al-Sc Alloy Prepared by Molten Salt Electrolyzing and the Microstructure Analysis [Dissertation]. Zhengzhou: Zhengzhou University, 2011
|
[20] |
何兵, 覃銘, 梁柳青, 等. Sc含量對Al-Si鑄造合金組織與力學性能的影響. 鑄造技術, 2017, 38(10): 2360 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201710010.htm
He B, Qin M, Liang L Q, et al. Effect of Sc content on microstructure and mechanical properties of Al-Si casting alloy. Foundry Technol, 2017, 38(10): 2360 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201710010.htm
|
[21] |
Zhang L, Eskin D G, Katgerman L. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys. J Mater Sci, 2011, 46(15): 5252 doi: 10.1007/s10853-011-5463-2
|
[22] |
Eskin G I, Eskin D G. Effects of ultrasonic (cavitation) melt processing on the structure refinement and property improvement of cast and worked aluminum alloys. Mater Sci Forum, 2002, 396-402: 77 doi: 10.4028/www.scientific.net/MSF.396-402.77
|
[23] |
徐婷, 張立華, 李瑞卿, 等. 鋁合金大鑄錠超聲半連鑄多場耦合的數值模擬與實驗研究. 工程科學學報, 2016, 38(9): 1270 doi: 10.13374/j.issn2095-9389.2016.09.011
Xu T, Zhang L H, Li R Q, et al. Numerical simulation and experimental study of multi-field coupling for semi-continuous casting of large-scale aluminum ingots with ultrasonic treatment. Chin J Eng, 2016, 38(9): 1270 doi: 10.13374/j.issn2095-9389.2016.09.011
|
[24] |
Lin C, Wu S S, Lu S L, et al. Microstructure and mechanical properties of rheo-diecast hypereutectic Al-Si alloy with 2%Fe assisted with ultrasonic vibration process. J Alloys Compd, 2013, 568: 42 doi: 10.1016/j.jallcom.2013.03.089
|
[25] |
Eskin G I, Eskin D G. Some control mechanisms of spatial solidification in light alloys. Z Metallkd, 2004, 95(8): 682 doi: 10.3139/146.018006
|
[26] |
Eskin G I. Improvement of the structure and properties of ingots and worked aluminum alloy semifinished products by melt ultrasonic treatment in a cavitation regime. Metallurgist, 2010, 54(7-8): 505 doi: 10.1007/s11015-010-9331-0
|
[27] |
鐘貞濤, 李瑞卿, 李曉謙, 等. 超聲處理對2219大規格鋁錠微觀組織與宏觀偏析的影響. 工程科學學報, 2017, 39(9): 1347 doi: 10.13374/j.issn2095-9389.2017.09.007
Zhong Z T, Li R Q, Li X Q, et al. Effect of ultrasonication on the microstructure and macrosegregation of a large 2219 aluminum ingot. Chin J Eng, 2017, 39(9): 1347 doi: 10.13374/j.issn2095-9389.2017.09.007
|
[28] |
陳鼎欣, 李曉謙, 黎正華, 等. 超聲鑄造7050鋁合金的微觀組織和宏觀偏析規律. 北京科技大學學報, 2012, 34(6): 666 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201206010.htm
Chen D X, Li X Q, Li Z H, et al. Microstructure and macro-segregation law of ultrasonic cast 7050 aluminum alloy ingots. J Univ Sci Technol Beijing, 2012, 34(6): 666 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201206010.htm
|
[29] |
王坤, 張立華, 黎正華, 等. 超聲外場對SiCp/7085復合材料顆粒微觀團聚與界面結合的作用機理. 工程科學學報, 2017, 39(2): 238 doi: 10.13374/j.issn2095-9389.2017.02.011
Wang K, Zhang L H, Li Z H, et al. Mechanism of ultrasonic field on the particle micro-agglomeration and interfacial bonding of SiCp/7085 composites. Chin J Eng, 2017, 39(2): 238 doi: 10.13374/j.issn2095-9389.2017.02.011
|
[30] |
王瑩, 李曉謙, 李瑞卿, 等. 大直徑鋁錠熱頂鑄造中超聲施振深度的細晶機制工程科學學報, 2019, 41(1): 96 doi: 10.13374/j.issn2095-9389.2019.01.010
Wang Y, Li X Q, Li R Q, et al. Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting. Chin J Eng, 2019, 41(1): 96 doi: 10.13374/j.issn2095-9389.2019.01.010
|
[31] |
袁敏娟. Na3AlF6-K3AlF6-AlF3體系低溫鋁電解質研究[學位論文]. 北京: 北京有色金屬研究總院, 2012
Yuan M J. Study on Na3AlF6-K3AlF6-AlF3 Low Temperature Aluminum Electrolyte System [Dissertation]. Beijing: General Research Institute for Nonferrous Metals, 2012
|
[32] |
Murray J L, McAlister A J. The Al-Si (aluminum-silicon) system. Bull Alloy Phase Diagrams, 1984, 5(1): 74 doi: 10.1007/BF02868729
|
[33] |
Yang J, Zhang J, Dai Y B, et al. The migration behavior of the fourth period transition metals in liquid Al: an ab initio molecular dynamics study. Comput Mater Sci, 2017, 130: 183 doi: 10.1016/j.commatsci.2017.01.001
|
[34] |
錢義. 熔鹽電解法制備鋁鈧鋯合金的基礎研究[學位論文]. 北京: 北京科技大學, 2017
Qian Y. Fundamental Studies on Preparation of Al-Sc-Zr Alloys by Electrolysis in Molten Salts [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
|
[35] |
Eskin D G. Ultrasonic processing of molten and solidifying aluminium alloys: overview and outlook. Mater Sci Technol, 2017, 33(6): 636 doi: 10.1080/02670836.2016.1162415
|
[36] |
Lauterborn W, Ohl C D. Cavitation bubble dynamics. Ultrason Sonochem, 1997, 4(2): 65 doi: 10.1016/S1350-4177(97)00009-6
|
[37] |
Eskin G I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason Sonochem, 2001, 8(3): 319 doi: 10.1016/S1350-4177(00)00074-2
|
[38] |
Liu X, Xue J L, Guo Z C, et al. Segregation behaviors of Sc and unique primary Al3Sc in Al-Sc alloys prepared by molten salt electrolysis. J Mater Sci Technol, 2019, 35(7): 1422 doi: 10.1016/j.jmst.2019.02.002
|
[39] |
Zhang W D, Liu Y, Yang J, et al. Effects of Sc content on the microstructure of as-cast Al-7wt. % Si alloys. Mater Charact, 2012, 66: 104 doi: 10.1016/j.matchar.2011.11.005
|
[40] |
Zhang Z T, Li J, Yue H Y, et al. Microstructure evolution of A356 alloy under compound field. J Alloys Compd, 2009, 484(1-2): 458 doi: 10.1016/j.jallcom.2009.04.125
|
[41] |
余昭福, 陳濤, 劉政. 超聲處理Al-Si合金及其等溫組織形貌分形特征. 有色金屬科學與工程, 2017, 8(4): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201704010.htm
Yu Z F, Chen T, Liu Z. Al-Si alloy microstructure under ultrasonic condition and fractal characteristics of its isothermal microstructure. Nonferrous Met Sci Eng, 2017, 8(4): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201704010.htm
|
[42] |
Zhang F, Qin A N, Liu S H, et al. Phase equilibria and solidification characteristics of the Al-Sc-Si alloys. J Mater Sci, 2016, 51(3): 1644 doi: 10.1007/s10853-015-9487-x
|
[43] |
Pandee P, Gourlay C M, Belyakov S A, et al. AlSi2Sc2 intermetallic formation in Al-7Si-0.3Mg-xSc alloys and their effects on as-cast properties. J Alloys Compd, 2018, 731: 1159 doi: 10.1016/j.jallcom.2017.10.125
|
[44] |
Okamoto H. Supplemental literature review of binary phase diagrams: Ag-Ni, Al-Cu, Al-Sc, C-Cr, Cr-Ir, Cu-Sc, Eu-Pb, H-V, Hf-Sn, Lu-Pb, Sb-Yb, and Sn-Y. J Phase Equilib Diffus, 2013, 34(6): 493 doi: 10.1007/s11669-013-0256-8
|