Citation: | YIN Sheng-hua, CHEN Wei, LIU Jia-ming, SONG Qing. Agglomeration experiment of secondary copper sulfide ore[J]. Chinese Journal of Engineering, 2019, 41(9): 1127-1134. doi: 10.13374/j.issn2095-9389.2019.09.003 |
[1] |
Quaicoe I, Nosrati A, Skinner W, et al. Agglomeration and column leaching behaviour of goethitic and saprolitic nickel laterite ores. Miner Eng, 2014, 65: 1 doi: 10.1016/j.mineng.2014.04.001
|
[2] |
Hoummady E, Golfier F, Cathelineau M, et al. A multi-analytical approach to the study of uranium-ore agglomerate structure and porosity during heap leaching. Hydrometallurgy, 2017, 171: 33 doi: 10.1016/j.hydromet.2017.04.011
|
[3] |
Hoummady E, Golfier F, Cathelineau M, et al. A study of uranium-ore agglomeration parameters and their implications during heap leaching. Miner Eng, 2018, 127: 22 doi: 10.1016/j.mineng.2018.07.012
|
[4] |
Yang C R, Qin W Q, Lai S S, et al. Bioleaching of a low grade nickel-copper-cobalt sulfide ore. Hydrometallurgy, 2011, 106(1-2): 32 doi: 10.1016/j.hydromet.2010.11.013
|
[5] |
Ahmadi A, Khezri M, Abdollahzadeh A A, et al. Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran. Hydrometallurgy, 2015, 154: 1 doi: 10.1016/j.hydromet.2015.03.006
|
[6] |
Hu B, Yi Y, Liang C, et al. Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators. Powder Technol, 2018, 335: 186 doi: 10.1016/j.powtec.2018.04.016
|
[7] |
Wollborn T, Schwed M F, Fritsching U. Direct tensile tests on particulate agglomerates for the determination of tensile strength and interparticle bond forces. Adv Powder Technol, 2017, 28(9): 2177 doi: 10.1016/j.apt.2017.05.024
|
[8] |
Vo T T, Mutabaruka P, Nezamabadi S, et al. Mechanical strength of wet particle agglomerates. Mech Res Commun, 2018, 92: 1 doi: 10.1016/j.mechrescom.2018.07.003
|
[9] |
羅毅, 溫建康, 武彪, 等. 低品位氧硫混合銅礦的酸性制粒及機理. 工程科學學報, 2017, 39(9): 1321 doi: 10.13374/j.issn2095-9389.2017.09.004
Luo Y, Wen J K, Wu B, et al. Acid agglomeration and mechanism analysis of a low-grade oxide-sulfide mixed copper ore. Chin J Eng, 2017, 39(9): 1321 doi: 10.13374/j.issn2095-9389.2017.09.004
|
[10] |
張元波, 周友連, 姜濤, 等. MHA黏結劑在釩鈦磁鐵礦氧化球團制備中的應用. 中南大學學報: 自然科學版, 2012, 43(7): 2459 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207000.htm
Zhang Y B, Zhou Y L, Jiang T, et al. Applications of MHA binder in oxidized pellets preparation from vanadium, titanium-bearing magnetite concentrates. J Cent South Univ Sci Technol, 2012, 43(7): 2459 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207000.htm
|
[11] |
謝小林, 段婷, 鄭富強, 等. 改性復合黏結劑制備磁鐵礦氧化球團研究. 金屬礦山, 2018(1): 79 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201801016.htm
Xie X L, Duan T, Zheng F Q, et al. Study of magnetite oxidized pellet prepared by modified composite binder. Met Mine, 2018(1): 79 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201801016.htm
|
[12] |
李彩霞, 王飛飛, 白陽, 等. 鈣基膨潤土提純制備球團黏結劑試驗. 硅酸鹽通報, 2018, 37(2): 672 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201802048.htm
Li C X, Wang F F, Bai Y, et al. Experimental study on preparation of pellet binder by purified Ca-bentonite. Bull Chin Ceram Soc, 2018, 37(2): 672 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201802048.htm
|
[13] |
賈繼華, 韓宏亮, 段東平, 等. 黏結劑對高爐灰含碳球團強度的影響. 鋼鐵釩鈦, 2013, 34(6): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201306007.htm
Jia J H, Han H L, Duan D P, et al. Effect of different binder addition on strength of carbon-containing pelletized blast furnace dusts. Iron steel Van Tit, 2013, 34(6): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201306007.htm
|
[14] |
殷志祥, 李秀晨, 白陽, 等. 提純膨潤土制備復合黏結劑用于生產球團試驗. 金屬礦山, 2018(4): 126 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804023.htm
Yin Z X, Li X C, Bai Y, et al. Study on production of pellet by compound binder prepared with purified bentonite. Met Mine, 2018(4): 126 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804023.htm
|
[15] |
吳霞, 彭小敏, 陳玉花. 新型高效黏結劑鐵精礦氧化球團試驗. 現代礦業, 2016(9): 78 doi: 10.3969/j.issn.1674-6082.2016.09.022
Wu X, Peng X M, Chen Y H. New high efficient adhesive iron concentrate oxidized pellets experiment. Mod Min, 2016(9): 78 doi: 10.3969/j.issn.1674-6082.2016.09.022
|
[16] |
黎湘虹, 黎澄宇, 王卉. 鑫泰含泥氧化銅礦制粒預處理堆浸工藝. 有色金屬, 2009, 61(1): 86 https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200901021.htm
Li X H, Li C Y, Wang H. Acidified granulation pretreatment-heap leaching processing of argillious oxidized copper ore from Xintai Co. Ltd. Nonferrous Met, 2009, 61(1): 86 https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200901021.htm
|
[17] |
梁建龍, 劉惠娟, 王清良, 等. 地表氧化銅礦酸法制粒堆浸試驗研究. 礦業研究與開發, 2012, 32(5): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201205012.htm
Liang J L, Liu H J, Wang Q L, et al. Experimental study on acid agglomeration heap-leaching of an oxidized copper ore on surface. Min Res Dev, 2012, 32(5): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201205012.htm
|
[18] |
譚海明. 低品位高含泥氧化銅礦的制粒堆浸新工藝研究. 邵陽學院學報: 自然科學版, 2005, 2(1): 92 doi: 10.3969/j.issn.1672-7010.2005.01.034
Tan H M. A study on granulated heap leaching of lowly graded and highly-mudded oxidized copper ore. J Shaoyang Univ Nat Sci, 2005, 2(1): 92 doi: 10.3969/j.issn.1672-7010.2005.01.034
|
[19] |
呂萍. 低品位高含泥氧化銅礦制粒堆浸新工藝的研究. 礦業研究與開發, 2001, 21(2): 32 doi: 10.3969/j.issn.1005-2763.2001.02.011
Lü P. A study on granulated heap leaching of low graded and highly-mudded oxidized copper ore. Min Res Dev, 2001, 21(2): 32 doi: 10.3969/j.issn.1005-2763.2001.02.011
|
[20] |
Quaicoe I, Nosrati A, Addai-Mensah J. Influence of binder composition on hematite-rich mixed minerals agglomeration behaviour and product properties. Chem Eng Res Des, 2015, 97: 45 doi: 10.1016/j.cherd.2015.02.021
|
[21] |
尹升華, 王雷鳴, 謝芳芳, 等. 堆體結構對次生硫化銅礦柱浸的影響. 中國有色金屬學報, 2017, 27(11): 2340 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201711020.htm
Yin S H, Wang L M, Xie F F, et al. Effect of heap structure on column leaching of secondary copper sulfide. Chin J Nonferrous Met, 2017, 27(11): 2340 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201711020.htm
|