<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
YIN Sheng-hua, CHEN Wei, LIU Jia-ming, SONG Qing. Agglomeration experiment of secondary copper sulfide ore[J]. Chinese Journal of Engineering, 2019, 41(9): 1127-1134. doi: 10.13374/j.issn2095-9389.2019.09.003
Citation: YIN Sheng-hua, CHEN Wei, LIU Jia-ming, SONG Qing. Agglomeration experiment of secondary copper sulfide ore[J]. Chinese Journal of Engineering, 2019, 41(9): 1127-1134. doi: 10.13374/j.issn2095-9389.2019.09.003

Agglomeration experiment of secondary copper sulfide ore

doi: 10.13374/j.issn2095-9389.2019.09.003
More Information
  • Corresponding author: CHEN Wei, E-mail: ustbchenwei@126.com
  • Received Date: 2019-04-15
  • Publish Date: 2019-09-01
  • The presence of a large amount of fine particles and muddy ore during the heap leaching process leads the occurrence of low leaching rate. Herein, agglomeration experiments using low-grade secondary copper sulfide ore were conducted to enhance the poor heap permeability and low leaching rate caused by the presence of a large amount of fine particles during the heap leaching process. The optimum binder, agglomeration technology, and agglomeration method were selected after investigating the bonding effects of different binders on mineral particles. The effect of single factor, including the binder mass fraction, acid quality, and bulk of water spraying on agglomeration experiments were conducted before the orthogonal experiment. The key factors that have a considerable effect on agglomeration were identified through the orthogonal experiment. According to the experimental results, the order of bonding effect of different granulation binders is as follows: SFS-2 > SFS-3 > cement > hemihydrate gypsum > SFS-1 > SFS-0 > sodium silicate > cationic polyacrylamide. The effect of agglomeration is the best when SFS-2 is selected as a binder, the acid quality is measured as 25 kg·t-1, and the mass fraction of spraying water is 30% during the agglomeration process. The wet strength and compressive strength reaches up to 94.62% and 417.44 N, respectively, after drying. The acid leaching time of agglomerations is maintained for more than 25 d, during which the shape of agglomerations remains unchanged and is without obvious fracture. According to the orthogonal experiment, the factors affecting the agglomeration in the descending order are as follows: binder mass fraction, acid quality, and bulk of water spraying. The bacterial inoculation experiment in the presence of binder was conducted, but it shows no considerable effect of binder on the bacterial community. The bacterial number of experiment in the presence of binder reaches 8.79×107 mL-1, while that in the absence of binder is 8.86×107 mL-1. The leaching experiments results show that the copper leaching rate increases by 12.74% after agglomeration because agglomeration increases the porosity between the minerals and improves the contact between leaching solution and minerals.

     

  • loading
  • [1]
    Quaicoe I, Nosrati A, Skinner W, et al. Agglomeration and column leaching behaviour of goethitic and saprolitic nickel laterite ores. Miner Eng, 2014, 65: 1 doi: 10.1016/j.mineng.2014.04.001
    [2]
    Hoummady E, Golfier F, Cathelineau M, et al. A multi-analytical approach to the study of uranium-ore agglomerate structure and porosity during heap leaching. Hydrometallurgy, 2017, 171: 33 doi: 10.1016/j.hydromet.2017.04.011
    [3]
    Hoummady E, Golfier F, Cathelineau M, et al. A study of uranium-ore agglomeration parameters and their implications during heap leaching. Miner Eng, 2018, 127: 22 doi: 10.1016/j.mineng.2018.07.012
    [4]
    Yang C R, Qin W Q, Lai S S, et al. Bioleaching of a low grade nickel-copper-cobalt sulfide ore. Hydrometallurgy, 2011, 106(1-2): 32 doi: 10.1016/j.hydromet.2010.11.013
    [5]
    Ahmadi A, Khezri M, Abdollahzadeh A A, et al. Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran. Hydrometallurgy, 2015, 154: 1 doi: 10.1016/j.hydromet.2015.03.006
    [6]
    Hu B, Yi Y, Liang C, et al. Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators. Powder Technol, 2018, 335: 186 doi: 10.1016/j.powtec.2018.04.016
    [7]
    Wollborn T, Schwed M F, Fritsching U. Direct tensile tests on particulate agglomerates for the determination of tensile strength and interparticle bond forces. Adv Powder Technol, 2017, 28(9): 2177 doi: 10.1016/j.apt.2017.05.024
    [8]
    Vo T T, Mutabaruka P, Nezamabadi S, et al. Mechanical strength of wet particle agglomerates. Mech Res Commun, 2018, 92: 1 doi: 10.1016/j.mechrescom.2018.07.003
    [9]
    羅毅, 溫建康, 武彪, 等. 低品位氧硫混合銅礦的酸性制粒及機理. 工程科學學報, 2017, 39(9): 1321 doi: 10.13374/j.issn2095-9389.2017.09.004

    Luo Y, Wen J K, Wu B, et al. Acid agglomeration and mechanism analysis of a low-grade oxide-sulfide mixed copper ore. Chin J Eng, 2017, 39(9): 1321 doi: 10.13374/j.issn2095-9389.2017.09.004
    [10]
    張元波, 周友連, 姜濤, 等. MHA黏結劑在釩鈦磁鐵礦氧化球團制備中的應用. 中南大學學報: 自然科學版, 2012, 43(7): 2459 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207000.htm

    Zhang Y B, Zhou Y L, Jiang T, et al. Applications of MHA binder in oxidized pellets preparation from vanadium, titanium-bearing magnetite concentrates. J Cent South Univ Sci Technol, 2012, 43(7): 2459 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207000.htm
    [11]
    謝小林, 段婷, 鄭富強, 等. 改性復合黏結劑制備磁鐵礦氧化球團研究. 金屬礦山, 2018(1): 79 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201801016.htm

    Xie X L, Duan T, Zheng F Q, et al. Study of magnetite oxidized pellet prepared by modified composite binder. Met Mine, 2018(1): 79 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201801016.htm
    [12]
    李彩霞, 王飛飛, 白陽, 等. 鈣基膨潤土提純制備球團黏結劑試驗. 硅酸鹽通報, 2018, 37(2): 672 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201802048.htm

    Li C X, Wang F F, Bai Y, et al. Experimental study on preparation of pellet binder by purified Ca-bentonite. Bull Chin Ceram Soc, 2018, 37(2): 672 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201802048.htm
    [13]
    賈繼華, 韓宏亮, 段東平, 等. 黏結劑對高爐灰含碳球團強度的影響. 鋼鐵釩鈦, 2013, 34(6): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201306007.htm

    Jia J H, Han H L, Duan D P, et al. Effect of different binder addition on strength of carbon-containing pelletized blast furnace dusts. Iron steel Van Tit, 2013, 34(6): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201306007.htm
    [14]
    殷志祥, 李秀晨, 白陽, 等. 提純膨潤土制備復合黏結劑用于生產球團試驗. 金屬礦山, 2018(4): 126 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804023.htm

    Yin Z X, Li X C, Bai Y, et al. Study on production of pellet by compound binder prepared with purified bentonite. Met Mine, 2018(4): 126 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804023.htm
    [15]
    吳霞, 彭小敏, 陳玉花. 新型高效黏結劑鐵精礦氧化球團試驗. 現代礦業, 2016(9): 78 doi: 10.3969/j.issn.1674-6082.2016.09.022

    Wu X, Peng X M, Chen Y H. New high efficient adhesive iron concentrate oxidized pellets experiment. Mod Min, 2016(9): 78 doi: 10.3969/j.issn.1674-6082.2016.09.022
    [16]
    黎湘虹, 黎澄宇, 王卉. 鑫泰含泥氧化銅礦制粒預處理堆浸工藝. 有色金屬, 2009, 61(1): 86 https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200901021.htm

    Li X H, Li C Y, Wang H. Acidified granulation pretreatment-heap leaching processing of argillious oxidized copper ore from Xintai Co. Ltd. Nonferrous Met, 2009, 61(1): 86 https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200901021.htm
    [17]
    梁建龍, 劉惠娟, 王清良, 等. 地表氧化銅礦酸法制粒堆浸試驗研究. 礦業研究與開發, 2012, 32(5): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201205012.htm

    Liang J L, Liu H J, Wang Q L, et al. Experimental study on acid agglomeration heap-leaching of an oxidized copper ore on surface. Min Res Dev, 2012, 32(5): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201205012.htm
    [18]
    譚海明. 低品位高含泥氧化銅礦的制粒堆浸新工藝研究. 邵陽學院學報: 自然科學版, 2005, 2(1): 92 doi: 10.3969/j.issn.1672-7010.2005.01.034

    Tan H M. A study on granulated heap leaching of lowly graded and highly-mudded oxidized copper ore. J Shaoyang Univ Nat Sci, 2005, 2(1): 92 doi: 10.3969/j.issn.1672-7010.2005.01.034
    [19]
    呂萍. 低品位高含泥氧化銅礦制粒堆浸新工藝的研究. 礦業研究與開發, 2001, 21(2): 32 doi: 10.3969/j.issn.1005-2763.2001.02.011

    Lü P. A study on granulated heap leaching of low graded and highly-mudded oxidized copper ore. Min Res Dev, 2001, 21(2): 32 doi: 10.3969/j.issn.1005-2763.2001.02.011
    [20]
    Quaicoe I, Nosrati A, Addai-Mensah J. Influence of binder composition on hematite-rich mixed minerals agglomeration behaviour and product properties. Chem Eng Res Des, 2015, 97: 45 doi: 10.1016/j.cherd.2015.02.021
    [21]
    尹升華, 王雷鳴, 謝芳芳, 等. 堆體結構對次生硫化銅礦柱浸的影響. 中國有色金屬學報, 2017, 27(11): 2340 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201711020.htm

    Yin S H, Wang L M, Xie F F, et al. Effect of heap structure on column leaching of secondary copper sulfide. Chin J Nonferrous Met, 2017, 27(11): 2340 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201711020.htm
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Article views (947) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频