<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
LI Qing-feng, WANG Ya-nan, HE Xin, LIAN Chen, LI Hua. New progress in the theoretical research and application of pulsating heat pipe[J]. Chinese Journal of Engineering, 2019, 41(9): 1115-1126. doi: 10.13374/j.issn2095-9389.2019.09.002
Citation: LI Qing-feng, WANG Ya-nan, HE Xin, LIAN Chen, LI Hua. New progress in the theoretical research and application of pulsating heat pipe[J]. Chinese Journal of Engineering, 2019, 41(9): 1115-1126. doi: 10.13374/j.issn2095-9389.2019.09.002

New progress in the theoretical research and application of pulsating heat pipe

doi: 10.13374/j.issn2095-9389.2019.09.002
More Information
  • Corresponding author: WANG Ya-nan, E-mail: wyn@sdu.edu.cn
  • Received Date: 2018-06-27
  • Publish Date: 2019-09-01
  • As a new type of heat transfer device with a unique working mechanism, the pulsating heat pipe (PHP) has high heat transfer efficiency, high resistance capability to drying out, and good environmental adaptability. Its structure is simple and variable, and the cost is low. Thus, the pulsating heat pipe has a good value for practical application and is currently a research hotspot in the field of heat transfer technology. On the basis of the introduction of the general advantages, structure types, and working principle of the pulsating heat pipe, this study first summarized the structure models, such as the straight tube, single elbow tube, and partially single elbow tube, and the theoretical models, such as the mass-spring-damping model, mass-momentum-energy equation model, and other mathematical models, commonly used in the current theoretical modeling research. Then, the operational process, working mechanism, and latest research progress in pulsating heat pipes at home and abroad were reviewed from the aspects of experimental and computational visualization research. The influence of different design and use parameters, such as pipe diameter and length, shape of the section, heating method, filling rate, angle of inclination, input power, and type of working fluid, on the start-up performance, heat transfer performance, and heat transfer limit of the pulsating heat pipe was systematically introduced. Furthermore, from the design and application perspectives, the research on pulsating heat pipes applied in electronic equipment, solar energy collection, thermal management of power unit, and heat exchange in low-temperature environment was reviewed, and the effects and advantages of pulsating heat pipes in practical application were demonstrated. Finally, the future research directions and development trends were forecasted. It is pointed out that the working mechanism, working performance, working process, and optimization design method of pulsating heat pipes can be investigated through a more detailed theoretical and simulation modeling.

     

  • loading
  • [1]
    Fairley J D, Thompson S M, Anderson D. Time-frequency analysis of flat-plate oscillating heat pipes. Int J Therm Sci, 2015, 91: 113 doi: 10.1016/j.ijthermalsci.2015.01.001
    [2]
    Patel V M, Gaurav, Mehta H B. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe. Appl Therm Eng, 2017, 110: 1568 doi: 10.1016/j.applthermaleng.2016.09.017
    [3]
    Akachi H. Structure of a Heat Pipe: U.S. Patent, 4921041. 1990-5-1
    [4]
    Qu J, Zhao J T, Rao Z H. Experimental investigation on the thermal performance of three-dimensional oscillating heat pipe. Int J Heat Mass Transfer, 2017, 109: 589 doi: 10.1016/j.ijheatmasstransfer.2017.02.040
    [5]
    Leu T S, Wu C H. Experimental studies of surface modified oscillating heat pipes. Heat Mass Transfer, 2017, 53(11): 3329 doi: 10.1007/s00231-017-2051-2
    [6]
    Mameli M, Araneo L, Filippeschi S, et al. Thermal response of a closed loop pulsating heat pipe under a varying gravity force. Int J Therm Sci, 2014, 80: 11 doi: 10.1016/j.ijthermalsci.2014.01.023
    [7]
    Kim J, Kim S J. Experimental investigation on the effect of the condenser length on the thermal performance of a micro pulsating heat pipe. Appl Therm Eng, 2018, 130: 439 doi: 10.1016/j.applthermaleng.2017.11.009
    [8]
    Han X H, Wang X H, Zheng H C, et al. Review of the development of pulsating heat pipe for heat dissipation. Renewable Sustainable Energy Rev, 2016, 59: 692 doi: 10.1016/j.rser.2015.12.350
    [9]
    Nikolayev V S. Effect of tube heat conduction on the single branch pulsating heat pipe start-up. Int J Heat Mass Transfer, 2016, 95: 477 doi: 10.1016/j.ijheatmasstransfer.2015.12.016
    [10]
    Cheng P, Ma H B. A mathematical model of an oscillating heat pipe. Heat Transfer Eng, 2011, 32(11-12): 1037 doi: 10.1080/01457632.2011.556495
    [11]
    Gürsel G, Frijns A J H, Homburg F G A, et al. A mass-spring-damper model of a pulsating heat pipe with a non-uniform and asymmetric filling. Appl Therm Eng, 2015, 91: 80 doi: 10.1016/j.applthermaleng.2015.06.014
    [12]
    Kim S, Zhang Y W, Choi J. Effects of fluctuations of heating and cooling section temperatures on performance of a pulsating heat pipe. Appl Therm Eng, 2013, 58(1-2): 42 doi: 10.1016/j.applthermaleng.2013.03.037
    [13]
    Dilawar M, Pattamatta A. A parametric study of oscillatory two-phase flows in a single turn pulsating heat pipe using a non-isothermal vapor model. Appl Therm Eng, 2013, 51(1-2): 1328 doi: 10.1016/j.applthermaleng.2012.11.025
    [14]
    Li M N, Huang R J, Xu D, et al. Theoretical analysis of start-up power in helium pulsating heat pipe//IOP Conference Series: Materials Science and Engineering, 2017, 171: 012102
    [15]
    Chiang C M, Chien K H, Chen H M, et al. Theoretical study of oscillatory phenomena in a horizontal closed-loop pulsating heat pipe with asymmetrical arrayed minichannel. Int Commun Heat Mass Transfer, 2012, 39(7): 923 doi: 10.1016/j.icheatmasstransfer.2012.05.019
    [16]
    陳婭琪, 吳慧英. 微型振蕩熱管非典型振蕩的實驗研究. 工程熱物理學報, 2013, 34(9): 1727 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201309030.htm

    Chen Y Q, Wu H Y. Experimental investigation on an atypical oscillation in silicon-based micro-pulsating heat pipes. J Eng Thermophys, 2013, 34(9): 1727 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201309030.htm
    [17]
    Mameli M, Marengo M, Khandekar S. Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe. Int J Therm Sci, 2014, 75: 140 doi: 10.1016/j.ijthermalsci.2013.07.025
    [18]
    胡偉男, 周春鵬, 崔付龍, 等. 單環路平板脈動熱管定向循環的數值研究. 低溫與超導, 2017, 45(2): 27 https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201702007.htm

    Hu W N, Zhou C P, Cui F L, et al. Numerical simulation of a single-loop flat plate pulsating heat pipe under unidirectional flow condition. Cryo Supercond, 2017, 45(2): 27 https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201702007.htm
    [19]
    王亞雄, 丁祥云. 新型三維脈動熱管的性能. 化工進展, 2016, 35(8): 2367 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201608010.htm

    Wang Y X, Ding X Y. Performance study for new type of three-dimensional pulsating heat pipe. Chem Ind Eng Prog, 2016, 35(8): 2367 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201608010.htm
    [20]
    Lips S, Bensalem A, Bertin Y, et al. Experimental evidences of distinct heat transfer regimes in pulsating heat pipes (PHP). Appl Therm Eng, 2010, 30(8-9): 900 doi: 10.1016/j.applthermaleng.2009.12.020
    [21]
    史維秀, 李惟毅, 潘利生. 多通路并聯回路板式脈動熱管可視化及啟動性能試驗研究. 機械工程學報, 2014, 50(4): 155 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201404025.htm

    She W X, Li W Y, Pan L S. Experiment study on visualization and start-up performance of closed loop plate pulsating heat pipe with parallel channels. J Mech Eng, 2014, 50(4): 155 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201404025.htm
    [22]
    Karthikeyan V K, Ramachandran K, Pillai B C, et al. Understanding thermo-fluidic characteristics of a glass tube closed loop pulsating heat pipe: flow patterns and fluid oscillations. Heat Mass Transfer, 2015, 51(12): 1669 doi: 10.1007/s00231-015-1525-3
    [23]
    劉向東, 王超, 陳永平. 基于紅外熱成像的脈動熱管運行及傳熱特性分析. 化工學報, 2016, 67(4): 1129 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201604007.htm

    Liu X D, Wang C, Chen Y P. Analysis of operation and heat transfer characteristics in pulsating heat pipe based on infrared thermal imaging technology. CIESC J, 2016, 67(4): 1129 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201604007.htm
    [24]
    Karthikeyan V K, Khandekar S, Pillai B C, et al. Infrared thermography of a pulsating heat pipe: Flow regimes and multiple steady states. Appl Therm Eng, 2014, 62(2): 470 doi: 10.1016/j.applthermaleng.2013.09.041
    [25]
    Qu J, Wu H Y, Cheng P. Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes. Int J Heat Mass Transfer, 2012, 55(21-22): 6109 doi: 10.1016/j.ijheatmasstransfer.2012.06.024
    [26]
    Qu J, Wu H Y. Flow visualization of silicon-based micro pulsating heat pipes. Sci China Technol Sci, 2010, 53(4): 984 doi: 10.1007/s11431-009-0391-y
    [27]
    Xu D H, Chen T F, Xuan Y M. Thermo-hydrodynamics analysis of vapor-liquid two-phase flow in the flat-plate pulsating heat pipe. Int Commun Heat Mass Transfer, 2012, 39(4): 504 doi: 10.1016/j.icheatmasstransfer.2012.02.002
    [28]
    Pouryoussefi S M, Zhang Y W. Nonlinear analysis of chaotic flow in a three-dimensional closed-loop pulsating heat pipe. J Heat Transfer, 2016, 138(12): 122003 doi: 10.1115/1.4034065
    [29]
    Pouryoussefi S M, Zhang Y W. Numerical investigation of chaotic flow in a 2D closed-loop pulsating heat pipe. Appl Therm Eng, 2016, 98: 617 doi: 10.1016/j.applthermaleng.2015.12.097
    [30]
    Pouryoussefi S M, Zhang Y W. Analysis of chaotic flow in a 2D multi-turn closed-loop pulsating heat pipe. Appl Therm Eng, 2017, 126: 1069 doi: 10.1016/j.applthermaleng.2017.01.097
    [31]
    Wang J S, Ma H, Zhu Q. Effects of the evaporator and condenser length on the performance of pulsating heat pipes. Appl Therm Eng, 2015, 91: 1018 doi: 10.1016/j.applthermaleng.2015.08.106
    [32]
    E J Q, Zhao X H, Deng Y W, et al. Pressure distribution and flow characteristics of closed oscillating heat pipe during the starting process at different vacuum degrees. Appl Therm Eng, 2016, 93: 166 doi: 10.1016/j.applthermaleng.2015.09.060
    [33]
    E J Q, Zhao X H, Liu H L, et al. Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe. Appl Energy, 2016, 175: 218 doi: 10.1016/j.apenergy.2016.05.028
    [34]
    唐愷, 陳曦. 低溫脈動熱管氣液兩相流數值模擬. 能源工程, 2015(4): 4 doi: 10.3969/j.issn.1004-3950.2015.04.002

    Tang K, Chen X. Numerical simulation of vapor-liquid two-phase flow in a cryogenic pulsating heat pipe. Energy Eng, 2015(4): 4 doi: 10.3969/j.issn.1004-3950.2015.04.002
    [35]
    Hu C F, Jia L. Experimental study on the start up performance of flat plate pulsating heat pipe. J Therm Sci, 2011, 20(2): 150 doi: 10.1007/s11630-011-0450-0
    [36]
    Lin Z R, Wang S F, Chen J J, et al. Experimental study on effective range of miniature oscillating heat pipes. Appl Therm Eng, 2011, 31(5): 880 doi: 10.1016/j.applthermaleng.2010.11.009
    [37]
    Wang J S, Ma H, Zhu Q, et al. Numerical and experimental investigation of pulsating heat pipes with corrugated configuration. Appl Therm Eng, 2016, 102: 158 doi: 10.1016/j.applthermaleng.2016.03.163
    [38]
    Riehl R R, dos Santos N. Water-copper nanofluid application in an open loop pulsating heat pipe. Appl Therm Eng, 2012, 42: 6 doi: 10.1016/j.applthermaleng.2011.01.017
    [39]
    Thompson S M, Cheng P, Ma H B. An experimental investigation of a three-dimensional flat-plate oscillating heat pipe with staggered microchannels. Int J Heat Mass Transfer, 2011, 54(17-18): 3951 doi: 10.1016/j.ijheatmasstransfer.2011.04.030
    [40]
    Verma B, Yadav V L, Srivastava K K. Experimental studies on thermal performance of a pulsating heat pipe with methanol/DI water. J Electron Cool Therm Control, 2013, 3: 27 doi: 10.4236/jectc.2013.31004
    [41]
    王宇, 李惟毅. 充液率對單環路脈動熱管啟動運行的影響. 中國電機工程學報, 2011, 31(17): 79 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201117013.htm

    Wang Y, Li W Y. Influence of filling ratio on startup and operation of a single loop pulsating heat pipe. Proc CSEE, 2011, 31(17): 79 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201117013.htm
    [42]
    王迅, 李達, 李云昭. 甲醇水溶液脈動熱管的傳熱特性. 化工進展, 2014, 33(12): 3170 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201412009.htm

    Wang X, Li D, Li Y Z. Heat transfer characteristics of pulsating heat pipe with aqueous methanol as working fluid. Chem Ind Eng Prog, 2014, 33(12): 3170 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201412009.htm
    [43]
    梁倩卿, 郝婷婷, 王凱, 等. 離子液體對脈動熱管啟動與運行的影響. 工程熱物理學報, 2016, 37(12): 2680 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201612030.htm

    Liang Q Q, Hao T T, Wang K, et al. Effect of ionic liquid on the startup and operation performance of the pulsating heat pipe. J Eng Thermophys, 2016, 37(12): 2680 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201612030.htm
    [44]
    蔡驥馳, 王瑞祥, 徐榮吉, 等. SDBS對銅-水脈動熱管啟動及傳熱性能影響. 化工學報, 2016, 67(5): 1852 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201605029.htm

    Cai J C, Wang R X, Xu R J, et al. Influence of SDBS on start time and heat transfer performance of pulsating heat pipe. CIESC J, 2016, 67(5): 1852 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201605029.htm
    [45]
    Jia H W, Jia L, Tan Z T. An experimental investigation on heat transfer performance of nanofluid pulsating heat pipe. J Therm Sci, 2013, 22(5): 484 doi: 10.1007/s11630-013-0652-8
    [46]
    Ji Y L, Ma H B, Su F M, et al. Particle size effect on heat transfer performance in an oscillating heat pipe. Exp Therm Fluid Sci, 2011, 35(4): 724 doi: 10.1016/j.expthermflusci.2011.01.007
    [47]
    Park Y h, Tanshen M R, Nine M J, et al. Characterizing pressure fluctuation into single-loop oscillating heat pipe. J Cent South Univ, 2012, 19(9): 2578 doi: 10.1007/s11771-012-1313-x
    [48]
    Shi W X, Pan L S. Influence of filling ratio and working fluid thermal properties on starting up and heat transferring performance of closed loop plate oscillating heat pipe with parallel channels. J Therm Sci, 2017, 26(1): 73 doi: 10.1007/s11630-017-0912-0
    [49]
    孫芹, 屈健, 袁建平. 等截面和變截面通道硅基微型脈動熱管傳熱特性比較. 化工學報, 2017, 68(5): 1803 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201705008.htm

    Sun Q, Qu J, Yuan J P. Heat transfer performance comparison of silicon-based micro oscillating heat pipes with and without expanding channels. CIESC J, 2017, 68(5): 1803 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201705008.htm
    [50]
    Tseng C Y, Yang K S, Chien K H, et al. Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters. Exp Therm Fluid Sci, 2014, 54: 85 doi: 10.1016/j.expthermflusci.2014.01.019
    [51]
    李孝軍, 屈健, 韓新月, 等. 微槽道脈動熱管的啟動及傳熱特性. 化工學報, 2016, 67(6): 2263 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201606011.htm

    Li X J, Qu J, Han X Y, et al. Start-up and heat transfer performance of micro-grooved oscillating heat pipe. CIESC J, 2016, 67(6): 2263 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201606011.htm
    [52]
    Pastukhov V G, Maydanik Y F. Development of a pulsating heat pipe with a directional circulation of a working fluid. Appl Therm Eng, 2016, 109: 155 doi: 10.1016/j.applthermaleng.2016.08.076
    [53]
    Aboutalebi M, Moghaddam A M N, Mohammadi N, et al. Experimental investigation on performance of a rotating closed loop pulsating heat pipe. Int Commun Heat Mass Transfer, 2013, 45: 137 doi: 10.1016/j.icheatmasstransfer.2013.04.008
    [54]
    郝婷婷, 馬學虎, 蘭忠, 等. 疏水表面對脈動熱管性能的影響. 工程熱物理學報, 2014, 35(1): 152 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201401035.htm

    Hao T T, Ma X H, Lan Z, et al. Effects of hydrophobic surface on heat transfer performance and oscillating motion for a pulsating heat pipe. J Eng Thermophys, 2014, 35(1): 152 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201401035.htm
    [55]
    郝婷婷, 馬學虎, 蘭忠, 等. 超親水脈動熱管液彈液膜沉積的實驗研究. 工程熱物理學報, 2015, 36(1): 168 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201501036.htm

    Hao T T, Ma X H, Lan Z, et al. Experimental investigation of the effect of superhydrophilic surface on the liquid film deposition of a pulsating heat pipe. J Eng Thermophys, 2015, 36(1): 168 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201501036.htm
    [56]
    Mohammadi M, Taslimifar M, Haghayegh S, et al. Open-loop pulsating heat pipes charged with magnetic nanofluids: powerful candidates for future electronic coolers. Nanoscale Microscale Thermophys Eng, 2014, 18(1): 18 doi: 10.1080/15567265.2013.787570
    [57]
    Taslimifar M, Mohammadi M, Afshin H, et al. Overall thermal performance of ferrofluidic open loop pulsating heat pipes: an experimental approach. Int J Therm Sci, 2013, 65: 234 doi: 10.1016/j.ijthermalsci.2012.10.016
    [58]
    王迅, 毛欣欣, 王磊, 等. 脈動熱管的傳熱極限特性. 天津大學學報, 2012, 45(10): 870 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201210005.htm

    Wang X, Mao X X, Wang L, et al. Characteristics of heat transfer limit in pulsating heat pipe. J Tianjin Univ, 2012, 45(10): 870 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201210005.htm
    [59]
    Cui X Y, Zhu Y, Li Z H, et al. Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe. Appl Therm Eng, 2014, 65(1-2): 394 doi: 10.1016/j.applthermaleng.2014.01.030
    [60]
    Wang S F, Chen J J, Hu Y X, et al. Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe. Appl Therm Eng, 2011, 31(14-15): 2367 doi: 10.1016/j.applthermaleng.2011.03.037
    [61]
    Karthikeyan V K, Ramachandran K, Pillai B C, et al. Effect of nanofluids on thermal performance of closed loop pulsating heat pipe. Exp Therm Fluid Sci, 2014, 54: 171 doi: 10.1016/j.expthermflusci.2014.02.007
    [62]
    Wang W Q, Cui X Y, Zhu Y. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures. Heat Mass Transfer, 2017, 53(6): 1983 doi: 10.1007/s00231-016-1958-3
    [63]
    Hu Y X, Liu T Q, Li X Y, et al. Heat transfer enhancement of micro oscillating heat pipes with self-rewetting fluid. Int J Heat Mass Transfer, 2014, 70: 496 doi: 10.1016/j.ijheatmasstransfer.2013.11.031
    [64]
    張明, 蘇新軍, 韓魏, 等. 氧化石墨烯/自濕潤流體脈動熱管的傳熱特性. 化工進展, 2015, 34(8): 2951 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201508009.htm

    Zhang M, Su X J, Han W, et al. Heat transfer characteristics of pulsating heat pipe with grapheme oxide/self-rewetting fluid. Chem Ind Eng Prog, 2015, 34(8): 2951 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201508009.htm
    [65]
    史維秀, 潘利生, 李惟毅. 傾角及冷卻工況對多通路并聯回路板式脈動熱管傳熱性能的影響. 化工學報, 2014, 65(2): 532 doi: 10.3969/j.issn.0438-1157.2014.02.023

    Shi W X, Pan L S, Li W Y. Influences of inclination and cooling condition on heat transfer performance of closed loop plate pulsating heat pipe with parallel channels. CIESC J, 2014, 65(2): 532 doi: 10.3969/j.issn.0438-1157.2014.02.023
    [66]
    Saha N, Das P K, Sharma P K. Influence of process variables on the hydrodynamics and performance of a single loop pulsating heat pipe. Int J Heat Mass Transfer, 2014, 74: 238 doi: 10.1016/j.ijheatmasstransfer.2014.02.067
    [67]
    Kearney D J, Suleman O, Griffin J, et al. Thermal performance of a PCB embedded pulsating heat pipe for power electronics applications. Appl Therm Eng, 2016, 98: 798 doi: 10.1016/j.applthermaleng.2015.11.123
    [68]
    Dang C, Jia L, Lu Q Y. Investigation on thermal design of a rack with the pulsating heat pipe for cooling CPUs. Appl Therm Eng, 2017, 110: 390 doi: 10.1016/j.applthermaleng.2016.08.187
    [69]
    Lü L C, Li J, Zhou G H. A robust pulsating heat pipe cooler for integrated high power LED chips. Heat Mass Transfer, 2017, 53(11): 3305 doi: 10.1007/s00231-017-2050-3
    [70]
    李志, 賈力, 魏文博. 基于板式脈動熱管的LED自然對流冷卻實驗研究. 工程熱物理學報, 2013, 34(7): 1361 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201307040.htm

    Li Z, Jia L, Wei W B. Experimental study on natural convection cooling of LED based on plate pulsating heat pipe. J Eng Thermophys, 2013, 34(7): 1361 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201307040.htm
    [71]
    Arab M, Soltanieh M, Shafii M B. Experimental investigation of extra-long pulsating heat pipe application in solar water heaters. Exp Therm Fluid Sci, 2012, 42: 6 doi: 10.1016/j.expthermflusci.2012.03.006
    [72]
    Nguyen K B, Yoon S H, Choi J H. Effect of working-fluid filling ratio and cooling-water flow rate on the performance of solar collector with closed-loop oscillating heat pipe. J Mech Sci Technol, 2012, 26(1): 251 doi: 10.1007/s12206-011-1005-8
    [73]
    Kargarsharifabad H, Mamouri S J, Shafii M B, et al. Experimental investigation of the effect of using closed-loop pulsating heat pipe on the performance of a flat plate solar collector. J Renewable Sustainable Energy, 2013, 5(1): 013106 doi: 10.1063/1.4780996
    [74]
    Nuntaphan A, Vithayasai S, Vorayos N, et al. Use of oscillating heat pipe technique as extended surface in wire-on-tube heat exchanger for heat transfer enhancement. Int Commun Heat Mass Transfer, 2010, 37(3): 287 doi: 10.1016/j.icheatmasstransfer.2009.11.006
    [75]
    劉建紅, 商福民, 劉登瀛. 脈動熱管間協同耦合強化傳熱特性實驗分析. 化工學報, 2011, 62(6): 1549 doi: 10.3969/j.issn.0438-1157.2011.06.011

    Liu J H, Shang F M, Liu D Y. Enhanced heat transfer characteristics of synergistic coupling between pulsating heat pipes. CIESC J, 2011, 62(6): 1549 doi: 10.3969/j.issn.0438-1157.2011.06.011
    [76]
    Burban G, Ayel V, Alexandre A, et al. Experimental investigation of a pulsating heat pipe for hybrid vehicle applications. Appl Therm Eng, 2013, 50(1): 94 doi: 10.1016/j.applthermaleng.2012.05.037
    [77]
    員冬玲, 邵敏, 蔡中盼, 等. 振蕩流熱管汽車散熱器傳熱性能的實驗研究. 制冷學報, 2013, 34(5): 77 doi: 10.3969/j.issn.0253-4339.2013.05.077

    Yuan D L, Shao M, Cai Z P, et al. Experiment study on heat transfer performance of oscillating heat pipe radiator for automobile. J Refrig, 2013, 34(5): 77 doi: 10.3969/j.issn.0253-4339.2013.05.077
    [78]
    Manno V, Filippeschi S, Mameli M, et al, Thermal-hydraulic characterization of a flat plate pulsating heat pipe for automotive applications. Interfacial Phenom Heat Transfer, 2015, 3(4): 413 doi: 10.1615/InterfacPhenomHeatTransfer.2016013273
    [79]
    Clement J, Wang X. Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application. Appl Therm Eng, 2013, 50(1): 268 doi: 10.1016/j.applthermaleng.2012.06.017
    [80]
    Deng H R, Liu Y M, Ma R F, et al. Experimental investigation on a pulsating heat pipe with hydrogen//IOP Conference Series: Materials Science and Engineering, 2015, 101: 012065
    [81]
    Natsume K, Mito T, Yanagi N, et al. Heat transfer performance of cryogenic oscillating heat pipes for effective cooling of superconducting magnets. Cryogenics, 2011, 51(6): 309 doi: 10.1016/j.cryogenics.2010.07.001
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(15)

    Article views (1498) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频